Главная страница

Учебник по медицинской биологии (том 2) - В.Н. Ярыгин. Биология под редакцией академика рамн профессора В. Н. Ярыгина в двух книгах


Скачать 3,73 Mb.
НазваниеБиология под редакцией академика рамн профессора В. Н. Ярыгина в двух книгах
АнкорУчебник по медицинской биологии (том 2) - В.Н. Ярыгин.pdf
Дата31.10.2018
Размер3,73 Mb.
Формат файлаpdf
Имя файлаUchebnik_po_meditsinskoy_biologii_tom_2_-_V_N_Yarygin.pdf
оригинальный pdf просмотр
ТипДокументы
#57531
страница2 из 23
Каталогkadet.volov

С этим файлом связано 58 файл(ов). Среди них: Detskie_bolezni_Baranov_A_A.pdf, Anatomia_respiratornoy_sistemy.pdf, Sudebnaya_meditsina_-_Slovar_-_Popov_-_2003_-_28.pdf, Maydannik_V_G_Pediatria.pdf, Mikhelson_V_A__Sidorov_V_A__Stepanenko_S_M_-_Anestezia_i_intensi, Избранные лекции по факультетской терапии.doc и ещё 48 файл(а).
Показать все связанные файлы
1   2   3   4   5   6   7   8   9   ...   23
11.5. ГЕНЕТИКО-АВТОМАТИЧЕСКИЕ ПРОЦЕССЫ (ДРЕЙФ ГЕНОВ)
Мутации и комбинативная изменчивость, периодические колебания численности организмов, изоляция изменяют генофонды популяций случайным образом. Их совместное действие с естественным отбором в процессе видообразования придает биологической изменчивости в целом приспособительный характер. Выполнению отбором упорядочивающей роли препятствуют изменения частот аллелей, зависящие от случайных причин. Таковыми в данном случае являются причины, обусловливающие преимущественное размножение генотипов вне связи сих приспособительной ценностью. Так как динамика частот аллелей в генофондах последовательных поколений носит статистический характер (см. закон
Харди — Вайнберга), размах случайных колебаний этого показателя возрастает по мере снижения численности особей в популяции.
Расчеты показывают, что при воспроизведении 5000 потомков родительской популяции с частотой некоего аллеля р = 0,50 колебания концентрации этого аллеля в 99,994% вариантов дочерних популяций в силу случайных причин (в отсутствие отбора поэтому аллелю) не выйдут за пределы 0,48—0,52. Если же родительская популяция мала и воспроизводит 50 потомков, то размах случайных колебаний концентрации наблюдаемого аллеля в том же проценте вариантов дочерних популяций составит 0,30—0,70. Случайные, ноне обусловленные действием естественного отбора колебания частот аллелей называют генетико-
автоматическими процессами или дрейфом генов.
При значительном размахе колебаний в последовательных поколениях создаются условия для потери популяцией некоторых аллелей и закрепления других. В результате происходят гомозиготизация особей и затухание изменчивости. Предположим, что популяция состоит из четырех особей и имеет аллель с частотой р = 0,125. Это означает, что указанный аллель присутствует в генофонде данной популяции в единственном экземпляре у одной из особей, гетерозиготной по соответствующему локусу. Любое случайное стечение обстоятельств, исключающее такую особь из размножения (лесной пожар, выстрел охотника и т.п.), приведет к утрате аллеля. Генофонд дочерней популяции будет его лишен. Вероятность утраты составит 1/2 в случае одного, 1/4 — двух, 1/8 — трех потомков у данной особи. В популяции из 4000 организмов при р = 0,125 минимум 500 особей имеют соответствующий аллель, причем в гомозиготном состоянии. Вероятность
22
исключения всех этих особей из размножения в силу случайных обстоятельств ничтожно мала. Это гарантирует переход аллеля в генофонд следующего поколения и его сохранение.
Дрейф генов обусловливает утрату (р = 0) или закрепление аллелей в гомозиготном состоянии у всех членов популяции (р = 1) вне связи сих приспособительной ценностью. Он играет важную роль в формировании генофондов малочисленных групп организмов, изолированных от остальной части вида. ВИДООБРАЗОВАНИЕ

Процесс образования видов осуществляется в результате взаимодействия элементарных эволюционных факторов. Видообразование в типичных случаях заключается в разделении первоначально единого видана два или более новых. Это связано с возникновением межпопуляционных изоляционных барьеров и углублением различий между генофондами популяций под действием естественного отбора вплоть до генетической изоляции. Такой процесс, ведущий к увеличению количества видов, называют дивергентным или истинным видообразованием. Выделяют также филетическое видообразование Оно заключается в постепенном превращении во времени одного видав другой. Этот способ наблюдается, если изменения условий захватывают весь ареал. Известны примеры видообразования путем гибридизации Перечисленные способы видообразования схематически изображены на рис. Рис. 11.6. Основные способы видообразования:
I—филетическое, дивергентное (истинное, путем гибридизации
Существуют аллопатрический и симпатрический пути образования видов. При
аллопатрическом видообразовании называемом также географическим, препятствия к скрещиванию первично обусловлены пространственным разобщением популяций. Генетическая изоляция развивается вторично. Так, некогда в Австралии существовал один вид попугайчиков рода Pachycephala. В условиях засушливого периода единый
23
ареал разделился на западную и восточную зоны. Со временем особи двух популяций приобрели морфофизиологические различия, которые сделали невозможным скрещивание, когда ареал вновь стал общим. Произошло образование из одного предкового вида двух новых.
При симпатрическом видообразовании новый вид образуется внутри ареала исходного вида. С самого начала изоляция является генетической. Такое положение создается в результате полиплоидии вследствие нарушений нормального хода мейоза, при крупных хромосомных перестройках или межвидовой гибридизации.
Аллопатрическое видообразование происходит медленно и дает виды, как правило, отличающиеся по морфофизиологическому критерию от вида-родоначальника.
Симпатрический путь относительно быстрый и дает виды, близкие к исходному по морфофизиологическим показателям.
Большинство видов, особенно животных, возникают аллопатрическим путем.
Симпатрическое видообразование на основе полиплоидии характерно для растений. Так, разные виды пшениц составляют ряд с наборами 14, 28, 42 хромосомы. В клетках дикого хлопчатника 26 хромосом, культурного — 52. Культурная слива возникла путем гибридизации терна с алычой. Примером гибридогенного вида является рябинокизильник, распространенный в лесах центральной Сибири.
Симпатрический путь видообразования у паразитов часто связан с освоением популяцией новых хозяев. Анализ генного состава и межхромосомных различий между человеком и человекообразными обезьянами дает повод предположить, что разделение этих двух ветвей могло идти симпатрическим путем. НАСЛЕДСТВЕННЫЙ ПОЛИМОРФИЗМ ПРИРОДНЫХ ПОПУЛЯЦИЙ. ГЕНЕТИЧЕСКИЙ ГРУЗ

Процесс видообразования с участием такого фактора, как естественный отбор, создает разнообразие живых форм, приспособленных к условиям обитания. Среди разных генотипов, возникающих в каждом поколении благодаря резерву наследственной изменчивости и перекомбинации аллелей, лишь ограниченное число обусловливает максимальную приспособленность к конкретной среде. Можно предположить, что дифференциальное воспроизведение этих генотипов в конце приведет к тому, что генофонды популяций будут представлены лишь удачными аллелями и их комбинациями. В итоге произойдет затухание наследственной изменчивости и повышение уровня гомозиготности генотипов.
В природных популяциях, однако, наблюдается противоположное состояние. Большинство организмов являются высокогетерозиготными. Отдельные особи гетерозиготны частично по разным локусам, что повышает суммарную гетерозиготность популяции. Так, методом электрофореза на 126 особях рачка
Euphausia superba, представляющего главную пищу китов в антарктических водах, изучали 36 локусов, кодирующих первичную структуру ряда ферментов. По 15 локусам изменчивость отсутствовала. По 21 локусу имелось по 3—4 аллеля. В целом в этой популяции рачков 58% локусов были гетерозиготными и имели по 2 24
аллеля и более. В среднему каждой особи по 5,8% гетерозиготных локусов. Средний уровень гетерозиготности у растений составляет 17%, беспозвоночных —
13,4, позвоночных — 6,6%. У человека этот показатель равен 6,7%. Столь высокий уровень гетерозиготности нельзя объяснить только мутациями в силу относительной их редкости.
Наличие в популяции нескольких равновесно сосуществующих генотипов в концентрации, превышающей по наиболее редкой форме 1%
1
, называют полиморфизмом Наследственный полиморфизм создается мутациями и комбинативной изменчивостью. Он поддерживается естественным отбором и бывает адаптационным (переходными гетерозиготным (балансированным).
Адаптационный полиморфизм возникает, если в различных, но закономерно изменяющихся условиях жизни отбор благоприятствует разным генотипам. Так, в популяциях двухточечных божьих коровок Adalia bipunctata при уходе на зимовку преобладают черные жуки, а весной—красные (рис. 11.7). Это происходит потому, что красные формы лучше переносят холода черные интенсивнее размножаются в летний период.
1
Наличие в популяций аллея с частотой менее 1% может быть объяснено только мутациями и комбинативной изменчивостью, без влияния естественного отбора
Рис. 11.7. Адаптационный полиморфизму двухточечных божьих коровок:
а—соотношение черной (зачернено) и красной форм при весеннем (В) и осеннем (О) сборе б—частота доминантного аллеля черной окраски в весенней и осенней популяциях
Балансированный полиморфизм возникает, если отбор благоприятствует гетерозиготам в сравнении с рецессивными и доминантными гомозиготами. Так, в опытной численно равновесной популяции плодовых мух Drosophila melanogaster, содержащей поначалу много мутантов с более темными телами (рецессивная мутация ebony), концентрация последних быстро падала, пока не стабилизировалась на уровне 10% (рис. 11.8). Анализ показал, что в созданных условиях гомозиготы по мутации ebony и гомозиготы по аллелю дикого типа менее жизнеспособны, чем гетерозиготные мухи. Это и создает состояние устойчивого полиморфизма по соответствующему локусу
Рис. 11.8. Балансированный полиморфизм по локусу окраски тела в опытной популяции плодовых мух серая муха (дикий тип, мутантная муха с черной окраской тела
Явление селективного преимущества гетерозигот называют
сверхдоминантностью. Механизм положительного отбора гетерозигот различен. Правилом является зависимость интенсивности отбора от частоты, с которой встречается соответствующий фенотип (генотип. Так, рыбы, птицы, млекопитающие предпочитают обычные фенотипические формы добычи, не замечая редких.
В качестве примера рассмотрим результаты наблюдений, выполненных на обыкновенной наземной улитке Cepaea nemoralis, раковина у которой бывает желтая, различных оттенков коричневого цвета, розовая, оранжевая или красная. На раковине может быть до пяти темных полос. При этом коричневая окраска доминирует над розовой, а они обе — над желтой. Полосатость является рецессивным признаком. Улитки поедаются дроздами, использующими камень как наковальню, чтобы разбить раковину и добраться до тела моллюска. Подсчет числа раковин разной окраски вокруг таких наковален показал, что на траве или лесной подстилке, фон которых достаточно однороден, добычей птиц чаще оказывались улитки с розовой и полосатой раковиной. На пастбищах с грубыми травами или в живых изгородях с более пестрым фоном чаще поедались улитки, раковины которых окрашены в светлые тона и не имели полос.
Самцы относительно редких генотипов могут иметь повышенную конкурентоспособность за самок. Селективное преимущество гетерозигот обусловливается также явлением гетерозиса. Повышенная жизнеспособность межлинейных гибридов отражает, по-видимому, результат взаимодействия аллельных и неаллельных генов в системе генотипов в условиях гетерозиготности по многим локусам. Гетерозис наблюдается в отсутствие фенотипического проявления рецессивных аллелей. Это сохраняет скрытыми от естественного отбора неблагоприятные и даже летальные рецессивные мутации.
В силу разнообразия факторов среды обитания естественный отбор действует одновременно по многим направлениям. При этом конечный результат зависит от
27
соотношения интенсивности разных векторов отбора Конечный результат естественного отбора в популяции зависит от наложения многих векторов отборов и контротборов. Благодаря этому достигается одновременно и стабилизация генофонда, и поддержание наследственного разноообразия.
Балансированный полиморфизм придает популяции ряд ценных свойств, что определяет его биологическое значение. Генетически разнородная популяция осваивает более широкий спектр условий жизни, используя среду обитания более полно. В ее генофонде накапливается больший объем резервной наследственной изменчивости. В результате она приобретает эволюционную гибкость и может, изменяясь в томили ином направлении, компенсировать колебания среды входе исторического развития.
В генетически полиморфной популяции из поколения в поколение рождаются организмы генотипов, приспособленность которых неодинакова. В каждый момент времени жизнеспособность такой популяции ниже уровня, который был бы достигнут при наличии в ней лишь наиболее удачных генотипов. Величину, на которую приспособленность реальной популяции отличается от приспособленности идеальной популяции из лучших генотипов, возможных приданном генофонде, называют генетическим грузом Он является своеобразной платой за экологическую и эволюционную гибкость. Генетический груз — неизбежное следствие генетического полиморфизма. АДАПТАЦИИ ОРГАНИЗМОВ К СРЕДЕ ОБИТАНИЯ
Наряду с общей приспособленностью, зависящей от генотипа в целом и измеряемой выживаемостью и успехом в размножении, в процессе эволюции возникают приспособления или адаптации, для решения организмом экологических задач предъявляемых средой обитания. Отдельные адаптации — это постоянно возникающие в
процессе развития жизни,
изменяющиеся, самосовершенствующиеся, иногда исчезающие, эволюционно обусловленные приспособления к конкретным факторам среды. В результате выработки адаптации достигается состояние адаптированности,
или соответствия морфологии, физиологии, поведения организмов занимаемым ими экологическим нишам. Под экологической нишей понимают всю совокупность условий среды и образа жизни данного организма.
Процесс выработки адаптации происходит постоянно. В него вовлечены многие признаки организма. Эволюция птиц от рептилий включала, например, последовательные изменения костей, мышц, покровов, конечностей. Увеличение грудины, перестройка гистологической структуры костей, придавшей им наряду с прочностью легкость, развитие оперения, обусловившего лучшие аэродинамические свойства и терморегуляцию, превращение пары конечностей в крылья, обеспечило решение проблемы полета. У некоторых представителей птиц впоследствии развились приспособления к наземному или водному образу жизни (страус,
28
пингвин. Вторичные адаптации захватили также ряд признаков пингвины, например, сменили крылья на плавники, а их покровы стали водонепроницаемы.
Одна экологическая задача может решаться путем выработки разных адаптации. Так, средством термоизоляции у медведей, песцов является густой меха у китообразных — жировой подкожный слой.
Адаптации возникают в ответ на конкретную экологическую задачу. В силу этого они всегда относительны. Относительность адаптации заключается в ограниченности их приспособительного значения определенными условиями обитания. Так, приспособительная ценность пигментированности бабочек березовых пядениц по сравнению со светлыми формами очевидна лишь на закопченных стволах деревьев. Приведенный пример показывает также, что о степени адаптивности признака можно судить лишь сравнив два его разных состояния.
Приспособление образуется только при наличии в генофонде вида наследственной информации, позволяющей изменить структуру и функции в требуемом направлении. Так, млекопитающие и насекомые используют для дыхания соответственно легкие и трахеи, которые развиваются из разных зачатков под контролем разных генов. Нередко основу нового приспособления составляет предсуществующая структура. Последняя выполняла другие функции, но изменилась в таком направлении и до такой степени, что смогла взять на себя новые функции.
Наличие структур, способных расширить или изменить круг функций, называют преадаптацией. Например, когда-то у рыб, обитавших в мелководных водоемах со стоячей и бедной кислородом водой, появились полые выросты в передней части пищевода и мускулистые плавники. Первая структура способствовала решению задачи дыхания, а вторая — перемещения по грунту. Они позволили некоторым рыбам покидать на время водоемы. Первоначально такие выходы совершались, видимо, в дождливые дни или влажные ночи. Именно так делает в настоящее время американский сомик-кошка Ictalurus nebulosus. Впоследствии эти структуры развились в легкие и конечности наземных животных. К адаптации иногда приводит новая мутация. Включившись в систему генотипа, она изменяет фенотип в направлении более эффективного решения экологических задач. Этот путь возникновения адаптации называют комбинативным.
Есть несколько классификаций адаптации. По механизму действия выделяют приспособления пассивной защиты (высокая плодовитость;
покровительственная, отпугивающая окраска, активной защиты, перемещения и добывания пищи (совершенствование аппарата движения, нервной системы, органов чувств развитие средств нападения у хищных, к общественному образу жизни (разделение труда у пчел, к сожительству с другими организмами симбиоз, паразитизм).
В зависимости от характера изменения различают адаптации с усложнением или упрощением морфофизиологической организации. Последнее типично для паразитов. По масштабу приспособления делят на специализированные и общие. С
29
помощью специализированных адаптации организм решает конкретные задачи в узкоограниченных условиях жизни вида. К примеру, особенности строения языка муравьеда таковы, что обеспечивают питание муравьями. Общие адаптации позволяют решать многие задачи в широком спектре условий среды. К ним относят внутренний скелет позвоночных и наружный членистоногих, гемоглобин как переносчик кислорода и др.
При наличии таких адаптации осваиваются разнообразные экологические ниши. Они обеспечивают значительную экологическую и эволюционную пластичность и обнаруживаются у представителей крупных таксонов организмов. Так, первичный роговой покров предковых форм рептилий в процессе исторического развития дал покровы современных рептилий, птиц, млекопитающих. Масштаб приспособления выявляется входе эволюции той группы организмов, у которой оно возникло впервые. ПРОИСХОЖДЕНИЕ БИОЛОГИЧЕСКОЙ ЦЕЛЕСООБРАЗНОСТИ
Биологическая целесообразность организации живых существ проявляется в гармонии между морфологией, физиологией, поведением организмов разных видов и средой их обитания. Она заключается также в удивительной согласованности строения и функций отдельных частей и систем самого организма. Сторонники теологического объяснения происхождения жизни видели в биологической целесообразности проявление мудрости Творца природы, будь то Бог или абстрактный разум. Теологическое объяснение биологической целесообразности исходит из принципа конечной цели, согласно которому жизнь развивается направленно в силу внутренне присущего стремления к известной цели.
Со времен Ж.-Б. Ламарка существуют гипотезы, связывающие целесообразность в мире жизни с принципом биологического соответствия ответа организмов на изменения во внешних условиях и наследованием таких благоприобретенных признаков Убедительным доказательством в пользу целесообразности изменений под влиянием среды долго признавался факт привыкания микроорганизмов к лекарственным препаратам сульфаниламидам, антибиотикам. Опыт В. и Э. Ледербергов показал, что это не так. Схема опыта приведена на рис. 11.9.
30
Рис. 11.9. Схема опыта, опровергающего факт непосредственного приспособления микроорганизмов к среде с антибиотиком (пояснение см. в тексте)
В чашке Петри на поверхности твердой питательной среды микроб образует колонии (1). Специальным штампом отпечаток всех колоний переносили на среду со смертельной дозой антибиотика (J). Если в таких условиях вырастала хоть одна колония, то она происходила от колонии микробов, также устойчивых к данному препарату. В отличие от других колоний первой чашки Петри (4) она давала рост в пробирке с антибиотиком (5). Если число исходных колоний было велико, то среди них, как правило, находилась и устойчивая.
Таким образом, речь идет не о направленном приспособлении микроба, а о состоянии преадаптации. Оно обусловлено наличием в геноме микроорганизма аллеля, блокирующего действие антибиотика. В одних случаях устойчивые микробы образуют фермент, разрушающий лекарственное вещество, в других — стенка клетки непроницаема для препарата. Появлению штаммов микроорганизмов, устойчивых к лекарственным препаратам, способствует неправильная тактика врачей, которые, желая избежать побочных эффектов, назначают низкие для микробов, сублетальные дозы.
Появление форм, резистентных к ядам, наблюдается у насекомых, млекопитающих. Это явление имеет сходную основу среди мутантных организмов находится устойчивая форма, которая подвергается положительному отбору в условиях действия отравляющего вещества. Например, устойчивость крыс к варфарину, используемому для их уничтожения, зависит от присутствия в генотипе определенного доминантного аллеля. Возможность прямого, непосредственного приспособления организмов к среде обитания допускалась некоторыми биологами еще в 40—50 гг. прошлого столетия.
Биологическая целесообразность строения и функций организмов складывается в процессе развития жизни. Она представляет собой историческую категорию Об этом свидетельствует смена типов организации, занимающих господствующее положение в органическом мире планеты. Так, господство амфибий
31
на протяжении почти 75 млн. лет сменилось господством рептилий, затянувшимся на 150 млн. лет. В периоды господства любой группы обычно случается несколько волн вымирания. Они изменяют относительный видовой состав соответствующего крупного таксона, например класса.
Проявление адаптации и биологической целесообразности в целом объясняется действием в природе естественного отбора. Из множества случайных мутаций он сохраняет и накапливает наследственные изменения, имеющие приспособительную ценность. Это объяснение позволяет понять, почему биологическая целесообразность, если ее рассматривать в пространстве и времени, является относительным свойством живых существ. Становится также ясным, почему в конкретных условиях обитания отдельные приспособления достигают лишь той степени развития, которая достаточна для выживания в сравнении с приспособлениями конкурентов
ГЛАВА ДЕЙСТВИЕ ЭЛЕМЕНТАРНЫХ ЭВОЛЮЦИОННЫХ ФАКТОРОВ В ПОПУЛЯЦИЯХ ЛЮДЕЙ. ПОПУЛЯЦИЯ ЛЮДЕЙ. ДЕМ, ИЗОЛЯТ
Размножение человека осуществляется половым путем, а репродуктивные ареалы в той или иной степени ограничены определенной группой населения. Это позволяет выделить в человечестве сообщества, аналогичные популяциям в биологическом понимании этого термина. В антропогенетике популяцией называют группу людей, занимающих общую территорию и свободно вступающих в брак. Изоляционные барьеры, препятствующие заключению брачных союзов, нередко носят выраженный социальный характер (например, различия в вероисповедании. Благодаря этому в формировании популяций людей главную роль играет не общность территории, асоциальные факторы.
Размер, уровень рождаемости и смертности, возрастной состав, экономическое состояние, уклад жизни являются демографическими показателями популяций людей. Генетически они характеризуются генофондами (аллелофондами). Демографические показатели оказывают серьезное воздействие на состояние генофондов человеческих популяций, главным образом через структуру браков. Большое значение в определении структуры браков имеет размер группы.
Популяции из 1500—4000 человек называют демами, популяции численностью до 1500 человек — изолятами. Для демов и изолятов типичен относительно низкий естественный прирост населения — соответственно порядка
20% и не более 25% за поколение. Частота внутригрупповых браков в них составляет 80—90% и свыше 90%, а приток лиц из других групп сохраняется на уровне 1—2% и менее 1%. В силу высокой частоты внутригрупповых браков члены изолятов, просуществовавших четыре поколения (примерно 100 лети более, являются не менее чем троюродными братьями и сестрами (сибсами).
В больших по размерам популяциях распределение аллелей отдельных генов в генотипах индивидуумов последовательных поколений подчиняется закону Харди
— Вайнберга. Это используют в медико-генетической практике для расчета доли гетерозигот — носителей определенного рецессивного аллеля. Так, в Швеции в 1965
—1974 гг. страдающие фенилкетонурией встречались с частотой примерно 1 : 40000. Исходя из закона Харди — Вайнберга, по локусу, представленному двумя аллелями, три возможных генотипа (A
l
A
1
, A
1
A
2
и А
2
А
2
) распределяются с частотой р, 2pq, Следовательно, q
2
= 1/40000, a q = 1/200. Частота доминантного аллеля нормального обмена фенилаланина р 1/200 = 199/200. Тогда частота гетерозигот 2pq = 2 х (1/200) • (199/200) = 2 • (199/40000). При найденных частотах доминантного и рецессивного аллелей популяция численностью 40 000 человек содержит одного больного фенилкетонурией (А
2
А
2
) и 400 носителей неблагоприятного аллеля в
33
гетерозиготном состоянии (A
1
A
2
). Остальные члены популяции гомозиготны по благоприятному доминантному аллелю (A
l
A
1
). Ниже приведены данные о частоте гетерозиготного носительства и соответствующей ей частоте рецессивных гомозигот с фенотипическим проявлением определенного аллеля.
Встречаемость гомозигот
(в пересчете на число членов
популяции)
Встречаемость гетерозигот
(в пересчете на число членов популяции : 10 1 : 2,3 1 : 100 1 : 5.6 1 : 1000 1 : 16 1 : 10 000 1 : 51 1 : 100 000 1 : 159 1 : 1 000 000 1 : Даже по редким рецессивным аллелям количество гетерозигот оказывается достаточно высоким, чтобы это учитывалось при медико-генетическом консультировании вступающих в брак. ВЛИЯНИЕ ЭЛЕМЕНТАРНЫХ ЭВОЛЮЦИОННЫХ ФАКТОРОВ НА
1   2   3   4   5   6   7   8   9   ...   23

перейти в каталог файлов
связь с админом