Главная страница

Учебник по медицинской биологии (том 2) - В.Н. Ярыгин. Биология под редакцией академика рамн профессора В. Н. Ярыгина в двух книгах


Скачать 3,73 Mb.
НазваниеБиология под редакцией академика рамн профессора В. Н. Ярыгина в двух книгах
АнкорУчебник по медицинской биологии (том 2) - В.Н. Ярыгин.pdf
Дата31.10.2018
Размер3,73 Mb.
Формат файлаpdf
Имя файлаUchebnik_po_meditsinskoy_biologii_tom_2_-_V_N_Yarygin.pdf
оригинальный pdf просмотр
ТипДокументы
#57531
страница4 из 23
Каталогkadet.volov

С этим файлом связано 58 файл(ов). Среди них: Detskie_bolezni_Baranov_A_A.pdf, Anatomia_respiratornoy_sistemy.pdf, Sudebnaya_meditsina_-_Slovar_-_Popov_-_2003_-_28.pdf, Maydannik_V_G_Pediatria.pdf, Mikhelson_V_A__Sidorov_V_A__Stepanenko_S_M_-_Anestezia_i_intensi, Избранные лекции по факультетской терапии.doc и ещё 48 файл(а).
Показать все связанные файлы
1   2   3   4   5   6   7   8   9   ...   23
13.1. ЭВОЛЮЦИЯ ГРУПП ОРГАНИЗМОВ
13.1.1. Уровень организации
Говоря о прогрессивной эволюции природы в целом и животного мира в частности, следует определить понятие уровень организации Это понятие прямо не связано со степенью сложности строения животного.
Действительно, степень сложности не только морфофизиологической организации, но и генома человека и современных человекообразных обезьян практически совпадает, но уровень организации человека несомненно выше.
Предложено несколько вариантов оценки уровня организации животных. Наиболее приемлемым из них является, вероятно, определение уровня организации через характер взаимоотношения организмов данной группы со средой обитания. Примитивные организмы проявляют себя в среде пассивно. Выживание и дальнейшая эволюция их обеспечиваются в первую очередь интенсивным процессом размножения, благодаря которому компенсируются огромные потери, возникающие в процессе естественного отбора. В противоположность им высокоорганизованные организмы более активно проявляют себя в среде обитания и не только противостоят ей, но и способны преобразовывать ее, приспосабливая для своих нужд. Плодовитость их невелика.
Рассмотренный критерий уровня организации может применяться только по отношению к группам организмов, связанных более или менее отдаленным родством. Так, пресмыкающиеся более высоко организованы, чем земноводные, потому, что они активнее ведут себя в среде обитания (размножение их может происходить в разнообразных условиях, при более низкой плодовитости выживаемость их потомства значительно выше. Уровень организации млекопитающих еще более высок благодаря постоянной температуре тела, сложному поведению, внутриутробному эмбриональному развитию и заботе о потомстве. Уровень организации человека чрезвычайно высок благодаря его социальному способу адаптации к среде и активному ее преобразованию (см. гл. 17).
13.1.2. Типы эволюции групп
В зависимости оттого, изменяется ли уровень организации в эволюционирующих группах, выделяют два основных типа эволюции аллогенез и арогенез.
При аллогенезе у всех представителей данной группы сохраняются без изменения основные черты строения и функционирования систем органов, благодаря чему уровень организации их остается прежним. Аллогенная эволюция происходит в пределах одной адаптивной зоны —
совокупности экологических ниш, различающихся в деталях, но сходных по общему направлению действия основных средовых факторов на организм данного типа. Интенсивное заселение конкретной
53
адаптивной зоны достигается благодаря возникновению у организмов идиоадаптаций — локальных морфофизиологических приспособлений к определенным условиям существования. Пример аллогенеза с приобретением идиоадаптаций к разнообразным условиям обитания в отряде насекомоядных млекопитающих см. на рис. Рис. 13.2. Аллогенез в отряде насекомоядных млекопитающих
Наземные формы а—прыгунчик, б—землеройка, веж земноводные формы г—
кутора, двыдровая землеройка, евыхухоль; роющие формы жкрот, з—
златокрот
Арогенез — такое направление эволюции, при которому некоторых групп внутри более крупного таксона появляются новые морфофизиологические особенности, приводящие к повышению уровня их организации. Эти новые прогрессивные черты организации называют ароморфозами. Ароморфозы
54
позволяют организмам заселять принципиально новые, более сложные адаптивные зоны. Так, арогенез ранних земноводных был обеспечен появлением у них таких основных ароморфозов, как пятипалые конечности наземного типа, легкие и два круга кровообращения с трехкамерным сердцем. Завоевание адаптивной зоны с более сложными для жизни условиями (наземной по сравнению сводной, воздушной по сравнению с наземной) сопровождается активным расселением в ней организмов с появлением у них локальных идиоадаптаций к различным экологическим нишам.
Таким образом, периоды арогенной эволюции группы могут сменяться периодами аллогенеза, когда в результате возникающих идиоадаптаций новая адаптивная зона заселяется и используется наиболее эффективно. Если входе филогенеза организмы осваивают более простую по сравнению с исходной адаптивную зону, например, переходя к прикрепленному неподвижному образу жизни или становись паразитами, то они претерпевают морфофизиологический регресс, или дегенерацию, утрачивая часть прогрессивных черт, которыми обладали их предки, и оказываясь на более низком уровне организации. Нередко и новая, более простая, адаптивная зона дает возможность широких идиоадаптаций к не менее разнообразным условиям обитания в ней, те. обеспечивает аллогенез (рис. Рис. 13.3. Направления эволюции групп — арогенез,II — аллогенез,III — дегенерация а, б, в — адаптивные зоны
Современный органический мир характеризуется огромным многообразием форм, отличающихся как по уровню организации, таки по разнообразию локальных адаптации именно благодаря смене типов эволюции, протекающей своеобразно в каждой из эволюционирующих групп. Наряду с высокоорганизованными формами существуют примитивные, свободноживущие и паразитические организмы,
55
возникшие эволюционно относительно недавно, и реликтовые группы, время бурного адаптационного процесса которых давно прошло. Формы эволюции групп
Существуют две элементарные формы филогенеза филетическая и дивергентная эволюция.
Филетическая эволюция — это изменения, происходящие водном филогенетическом стволе, эволюционирующем во времени как единое целое. Реконструированы филогенетические ряды слона, лошади и других организмов, в которых можно наблюдать постепенное нарастание количества и степени выраженности признаков, характерных для современных форм (рис. Рис. 13.4. Филетическая эволюция конечности всем. Лошадиные. преобразование скелета конечности схема филетической эволюции предковая форма—фенакодус, 1— эогиппус, 2—миогиппус, 3—парагиппус, 4—
56
плиогиппус, 5— лошадь Ап—А
5
— этапы эволюции
Дивергентная эволюция заключается в образовании на основе одной предковой группы двух или нескольких производных (рис. 13.5). Она приводит к дифференциации более крупных таксонов на более мелкие, например классов на отряды, родов на виды.
Как филетическая, таки дивергентная эволюция протекают на общей генетической базе, поэтому между организмами сохраняется более или менее выраженное генотипическое и морфофункциональное сходство.
Сопоставление филогенеза в разных группах позволяет выделить и некоторые общие закономерности соотносительной эволюции. Так, при попадании в одну и туже среду обитания двух или более филогенетических групп неродственных организмов у них обычно проявляется конвергенция признаков. При этом сходные экологические задачи они решают сходным образом. Конвергентные адаптации возникают в этом случае на разной генетической основе, затрагивают в первую очередь поверхностные признаки, не распространяясь на общий план строения и наиболее существенные черты организации соответствующих групп. Примером конвергентной эволюции являются форма тела и особенности локомоции вводе у акуловых рыб, водных пресмыкающихся — ихтиозавров, костистых рыб, пингвинов, ластоногих и китообразных млекопитающих, внутреннее строение которых полностью соответствует особенностям, характерным для классов, к которым они относятся (рис. Другая форма соотносительной эволюции — параллелизм —
реализуется в двух или нескольких группах, связанных более или менее отдаленным родством, которое основано на дивергенции от общего предка. В связи с общностью части генофондов, унаследованных от предков, у них возникают сходные адаптации в условиях действия факторов отбора в одинаковом направлении. Параллельное филетическое развитие двух родственных групп обеспечивается реализацией закона гомологических рядов (см. разд. 13.3.5). Примером параллелизма является эволюция одногорбого и двугорбого верблюдов соответственно в Африке и Центральной Азии, имеющих сходные адаптации к жизни в пустынях
Параллелизм можно наблюдать ив родственных группах организмов, разобщенных временем. Так, во второй половине кайнозойской эры в семействе кошачьих такой признак, как саблезубость (гипертрофия клыков верхней челюсти, возникал по крайней мере четырежды у представителей четырех разных родов (рис.
13.7).
13.1.4. Биологический прогресс и биологический регресс
Эволюция любого типа — арогенная, аллогенная или идущая по типу мофофизиологического регресса в природе — в целом приводит к всесветному расселению живых организмов разного уровня организации
Рассматривая эволюцию отдельных таксонов, можно убедиться в том, что некоторые из них находятся в состоянии расцвета, в то время как другие вымирают. Успех группы организмов в эволюционном процессе оценивают как состояние биологического прогресса критериями которого являются 1) увеличение количества представителей соответствующей группы 2) расширение ареала распространения) активизация видоообразования вроде, увеличение количества родов в семействе, семейств в отряде и т.д.
Явление, противоположное биологическому прогрессу, — биологический регресс —
свидетельствует об угасании филогенетической группы, ведущем к ее вымиранию. Также как и биологический прогресс, состояние регресса может длиться очень долго. Оставшиеся немногочисленные представители некогда биологически прогрессивной группы, найдя соответствующую их организации экологическую нишу, могут продолжать существовать на протяжении сотен миллионов лет. Они называются реликтами обладают консервативностью организации и крайне медленно эволюционируют. Примерами реликтов являются
58
современная кистеперая рыба — латимерия, ближайшие родственники которой жили в девонском периоде более 200 млн. лет назад, а также дерево гинкго, непосредственные предки которого существовали на Земле уже впервой половине мезозойской эры.
Рис. 13.6. Конвергентная эволюция формы тела позвоночных. водные животные разного происхождения схема конвергентной эволюции:
1—акула, ихтиозавр, дельфин, костистая рыба, пингвин, 6— тюлень A
—A
1
, B—B
1
— этапы эволюции
На протяжении исторического развития одна и та же группа может претерпевать периоды бурного расцвета, стабильного состояния, или стагнации, и упадка. Так, в девонском периоде появились первые земноводные, вставшие на путь арогенной эволюции. Заселив наземную среду обитания, они господствовали на ней в течение 75 млн. лет. На границе палеозойской и мезозойской эр (230 млн. лет назад) бурный биологический прогресс претерпевают пресмыкающиеся, быстро вытесняющие земноводных, которые с тех времени до современного состояния переживают биологический регресс.
Расцвет пресмыкающихся длился до последней трети мезозойской эры, когда около 65 млн. лет назад) он сменился биологическим регрессом, после чего освобождающиеся вымирающими динозаврами экологические ниши стали занимать бурно эволюционирующие млекопитающие и птицы, биологический прогресс которых продолжается до настоящего времени. В тоже время такой класс, как костистые рыбы, пройдя период бурного расцвета к началу мезозойской эры и прочно заняв разнообразные места обитания, до настоящего времени находится в состоянии стабильного господства среди позвоночных вводной среде обитания.
Состояние биологического прогресса может быть обусловлено как аро- и аллогенезом, таки морфофизиологическим регрессом. Действительно, занятие новых экологических ниш как в новых адаптивных зонах, таки в уже освоенных приводит и к активизиции размножения, и к расширению ареала, и к усилению видообразования
Рис. 13.7. Параллельная эволюция саблезубости у кошачьих. черепа саблезубых кошек в разные периоды кайнозойской эры схемы параллельной эволюции:
а—махайрод (олигоцен - 37-25 млн. лет назад, б—смилодон (миоцен - 25-9 млн. лет назад) в—лжесаблезубая кошка (олигоцен - 37-25 млн. лет назад, г саблезубый тигр (плейстоцен 1,8 млн тыс. лет назад А-А
2
этапы синхронного
60
параллелизма, B-B
2
- этапы асинхронного. Эмпирические правила эволюции групп

Из многочисленных обнаруженных эмпирическим путем правили закономерностей эволюции групп остановимся на важнейших.
Согласно правилу необратимости эволюции эволюция является необратимым процессом, и организмы не могут вернуться к прежнему состоянию, уже пройденному их предками ранее. Действительно, каждое эволюционно значимое изменение представляет собой комбинацию многих мутаций и появление новых регуляторных взаимодействий, подхваченных естественным отбором, но возникших случайно и независимо друг от друга. Поэтому понятно, что возвращение генофонда данной группы организмов или даже одного генотипа к состоянию, характерному для предков, статистически практически невероятно. Однако в ряде случаев за счет отдельных обратных мутаций или за счет мутаций регуляторных генов возможно повторное возникновение отдельных признаков атавистической природы (разд. Правило прогрессивной специализации утверждает, что филогенетическая группа, эволюционирующая по пути приспособления к данным конкретным условиями в дальнейшем будет продвигаться по пути углубления специализации. Генетические основы этого правила заключены в том, что в г«роцессе естественного отбора в условиях данной адаптивной зоны отсеиваются те гены генофондов популяций, которые не соответствуют ей. В результате возникает ограниченность способности генофондов к изменениям в разных направлениях.
Примером прогрессивной специализации служат морфологические преобразования конечностей в эволюционной ветви лошадей (см. рис. 13.4). При переходе к жизни на открытых пространствах с плотной почвой у предков лошади уменьшается количество пальцев до одного, что не позволяет современным лошадям населять другие биотопы. Другой пример — эволюция Юго-Восточно-азиатских человекообразных обезьян гиббонов. Специализация их к древесному образу жизни при отсутствии хватательного хвоста, имеющегося, например, у всех американских древесных обезьян, привела к возникновению своеобразного типа движения — брахиации, при котором осуществляются прыжки по веткам в подвешенном состоянии на передних конечностях. Они при этом резко удлиняются, большой палец значительно редуцируется, а рука становится почти неспособной к манипуляциям мелкими предметами. При передвижении по земле руки гиббонов уже не участвуют в локомоции.
Прогрессивная специализация резко уменьшает экологическую пластичность видов и часто является причиной их вымирания при изменившихся условиях. Уменьшение размеров и упрощение видового состава тропических лесов Индонезии являются причиной биологического регресса такого узкоспециализированного вида человекообразных обезьян, как орангутан.
Следствием правила прогрессивной специализации является правило происхождения новых групп организмов от малоспециализированных предков.
61
Примеров, иллюстрирующих это правило, много. Действительно, млекопитающие произошли от пресмыкающихся, сохранивших в своей организации некоторые черты земноводных. Прогрессивная линия эволюции приматов, ведущая к человеку, не связана с рамапитеком (специализированной древесной формой, как полагали раньше, а берет начало от неспециализированных африканских приматов, ведущих полуназемный образ жизни (см. § 15.2 и 15.3). Генетической основой этого правила является отсутствие жесткого одностороннего отбора генотипов и сохранение в связи с этим их большего разнообразия у неспециализированных форм и, следовательно, их высокой экологической пластичности. СООТНОШЕНИЕ ОНТО- И ФИЛОГЕНЕЗА
13.2.1. Закон зародышевого сходства
Исследователи начала XIX в. впервые стали обращать внимание на сходство стадий развития эмбрионов высших животных со ступенями усложнения организации, ведущими от низкоорганизованных форм к прогрессивным. Сопоставляя стадии развития зародышей разных видов и классов хордовых, К. Бэр сделал следующие выводы. Эмбрионы животных одного типа на ранних стадиях развития сходны. Они последовательно переходят в своем развитии от более общих признаков типа ко все более частным. В последнюю очередь развиваются признаки, указывающие на принадлежность эмбриона к определенному роду, виду, и, наконец, индивидуальные черты. Эмбрионы разных представителей одного типа постепенно обособляются друг от друга (рис. К. Бэр, не будучи эволюционистом, не мог связывать открытые им закономерности индивидуального развития с процессом филогенеза. Поэтому сделанные им обобщения имели значение не более чем эмпирических правил.
Развитие эволюционной идеи в последующем позволило объяснить сходство ранних зародышей их историческим родством, а приобретение ими все более частных черт с постепенным обособлением друг от друга — действительным обособлением соответствующих классов, отрядов, семейств, родов и видов в процессе эволюции.
Вскоре после открытия закона зародышевого сходства Ч. Дарвин показал, что этот закон свидетельствует об общности происхождения и единства начальных этапов эволюции в пределах типа
Рис. 13.8. Сходство зародышей разных классов позвоночных на разных этапах (онтогенеза. Онтогенез — повторение филогенеза
Сопоставляя онтогенез ракообразных с морфологией их вымерших предков, Ф. Мюллер сделал вывод о том, что ныне живущие ракообразные в своем развитии повторяют путь, пройденный их предками. Преобразование онтогенеза в эволюции, по мнению Ф. Мюллера, осуществляется благодаря его удлинению за счет добавления к нему дополнительных стадий или надставок. На основе этих наблюдений, а также изучения развития хордовых Э. Геккель (1866) сформулировал основной биогенетический закон, в соответствии с которым онтогенез представляет собой краткое и быстрое повторение филогенеза
Повторение структур, характерных для предков, в эмбриогенезе потомков названо рекапитуляциями. Рекапитулируют не только морфологические признаки — хорда, закладки жаберных щелей и жаберных дугу всех хордовых, но и особенности биохимической организации и физиологии. Так, в эволюции позвоночных происходит постепенная утрата ферментов, необходимых для распада мочевой кислоты — продукта метаболизма пуринов. У большинства беспозвоночных конечный продукт распада мочевой кислоты — аммиаку земноводных и рыб — мочевина, у многих пресмыкающихся — аллантоина у некоторых млекопитающих мочевая кислота вообще не расщепляется и выделяется с мочой. В эмбриогенезе млекопитающих и человека отмечены биохимические и физиологические рекапитуляции выделение ранними зародышами аммиака, позже мочевины, затем аллантоина, а на последних стадиях развития — мочевой кислоты.
Однако в онтогенезе высокоорганизованных организмов не всегда наблюдается строгое повторение стадий исторического развития, как это следует из биогенетического закона. Так, зародыш человека никогда не повторяет взрослых стадий рыб, земноводных, пресмыкающихся и млекопитающих, а сходен по ряду черт лишь сих зародышами. Ранние стадии развития сохраняют наибольшую консервативность, благодаря чему рекапитулируют более полно, чем поздние. Это связано стем, что одним из наиболее важных механизмов интеграции ранних этапов эмбриогенеза является эмбриональная индукция, а структуры зародыша, формирующиеся в первую очередь, такие, как хорда, нервная трубка, глотка, кишка и сомиты, представляют собой организационные центры зародыша, от которых зависит весь ход развития.
Генетическая основа рекапитуляции заключена в единстве механизмов генетического контроля развития, сохраняющемся на базе общих генов регуляции онтогенеза, которые достаются родственным группам организмов от общих предков. Онтогенез — основа филогенеза
Опираясь только на основной биогенетический закон, невозможно объяснить процесс эволюции бесконечное повторение пройденного само по себе не рождает нового. Так как жизнь существует на Земле благодаря смене поколений конкретных организмов, эволюция ее протекает благодаря изменениям, происходящим в их онтогенезах. Эти изменения сводятся к тому, что конкретные онтогенезы отклоняются от пути, проложенного предковыми формами, и приобретают новые черты.
К таким отклонениям относятся, например, ценогенезы — приспособления, возникающие у зародышей или личинок и адаптирующие их к особенностям среды обитания. У взрослых организмов ценогенезы не сохраняются. Примерами ценогенезов являются роговые образования во рту личинок бесхвостых земноводных, облегчающие им питание растительной пищей. В процессе метаморфоза у лягушонка они исчезают и пищеварительная система перестраивается для питания насекомыми и червями. К ценогенезам у амниот
64
относят зародышевые оболочки, желточный мешок и аллантоис, ау плацентарных млекопитающих и человека — еще и плаценту с пуповиной.
Ценогенезы, проявляясь только на ранних стадиях онтогенеза, не изменяют типа организации взрослого организма, но обеспечивают более высокую вероятность выживания потомства. Они могут сопровождаться при этом уменьшением плодовитости и удлинением зародышевого или личиночного периода, благодаря чему организм в постэмбриональном или постличиночном периоде развития оказывается более зрелыми активным. Возникнув и оказавшись полезными, ценогенезы будут воспроизводиться в последующих поколениях. Так, амнион, появившийся впервые у предков пресмыкающихся в каменноугольном периоде палеозойской эры, воспроизводится у всех позвоночных, развивающихся на суше, как у яйцекладущих — пресмыкающихся и птиц, таки у плацентарных млекопитающих.
Другой тип филогенетически значимых преобразований филогенеза —
филэмбриогенезы. Они представляют собой отклонения от онтогенеза, характерного для предков, проявляющиеся в эмбриогенезе, но имеющие адаптивное значение у взрослых форм. Так, закладки волосяного покрова появляются у млекопитающих на очень ранних стадиях эмбрионального развития, носам волосяной покров имеет значение только у взрослых организмов.
Такие изменения онтогенеза, будучи полезными, закрепляются естественным отбором и воспроизводятся в последующих поколениях. В основе этих изменений лежат те же механизмы, которые обусловливают врожденные пороки развития нарушение пролиферации клеток, их перемещения, адгезии, гибели или дифференцировки (см. § 8.2 и 9.3). Однако от пороков их также, как и ценогенезы, отличает адаптивная ценность, те. полезность и закрепленность естественным отбором в филогенезе.
В зависимости оттого, на каких этапах эмбриогенеза и морфогенеза конкретных структур возникают изменения развития, имеющие значение филэмбриогенезов, различают три их типа. Анаболии, или надставки, возникают после того, как орган практически завершил свое развитие, и выражаются в добавлении дополнительных стадий, изменяющих конечный результат.
К анаболиям относят такие явления, как приобретение специфической формы тела камбалой лишь после того, как из икринки вылупляется малек, неотличимый от других рыба также появление изгибов позвоночника, сращение швов в мозговом черепе, окончательное перераспределение кровеносных сосудов в организме млекопитающих и человека. Девиации — уклонения, возникающие в процессе морфогенеза органа. Примером может являться развитие сердца в онтогенезе млекопитающих, у которых оно рекапитулирует стадию трубки, двухкамерное и трехкамерное строение, но стадия формирования неполной перегородки, характерной для пресмыкающихся, вытесняется развитием перегородки, построенной и расположенной иначе и характерной только для млекопитающих (см. § 14.4). В развитии легких у
65
млекопитающих также обнаруживается рекапитуляция ранних стадий предков, позднее морфогенез идет по-новому (см. разд. Рис. 13.9. Преобразования онто- и филогенеза в связи с возникающими филэмбриогенезами Буквами обозначены этапы онтогенеза, цифрами — филэмбриогенетические преобразования. Архаллаксисы — изменения, обнаруживающиеся на уровне зачатков и выражающиеся в нарушении их расчленения, ранних дифференцировок или в появлении принципиально новых закладок. Классическим примером архаллаксиса является развитие волосу млекопитающих, закладка которых наступает на очень ранних стадиях развития и с самого начала отличается от закладок других придатков кожи позвоночных (см. § По типу архаллаксиса возникают хорда у примитивных бесчерепных, хрящевой позвоночнику хрящевых рыб (см. разд. 14.2.1.1), развиваются нефроны вторичной почки у пресмыкающихся (см. разд. Ясно, что при эволюции за счет анаболии в онтогенезах потомков полностью реализуется основной биогенетический закон, те. происходят рекапитуляции всех предковых стадий развития. При девиациях ранние предковые стадии рекапитулируют, а более поздние заменяются развитием в новом направлении.
Архаллаксисы полностью не допускают рекапитуляции в развитии данных структур, изменяя сами их зачатки.
Если сопоставить схему филэмбриогенезов с таблицей К. Бэра (рис. 13.9), иллюстрирующей закон зародышевого сходства, то станет понятно, что Бэр уже был очень близок к открытию филэмбриогенезов, но отсутствие эволюционной идеи в его рассуждениях не позволило более чем налет опередить научную мысль.
В эволюции онтогенеза наиболее часто встречаются анаболии как филэмбриогенезы, лишь в малой степени изменяющие целостный процесс развития. Девиации как нарушения морфогенетического процесса в эмбриогенезе часто
66
отметаются естественным отбором и встречаются поэтому значительно реже. Наиболее редко в эволюции проявляются архаллаксисы в связи стем, что они изменяют весь ход эмбриогенеза, и если такие изменения затрагивают зачатки жизненно важных органов или органов, имеющих значение эмбриональных организационных центров (см. разд. 8.2.6), то часто они оказываются несовместимыми с жизнью.
В одной и той же филогенетической группе эволюция в разных системах органов может происходить за счет разных филэмбриогенезов.
Так, в онтогенезе млекопитающих прослеживаются все этапы развития осевого скелета в подтипе позвоночных (анаболии), в развитии сердца рекапитулируют лишь ранние стадии (девиация, а в развитии придатков кожи рекапитуляции вообще отсутствуют (архаллаксис). Знание типов филэмбриогенезов в эволюции систем органов хордовых необходимо врачу для прогнозирования возможности возникновения у плодов и новорожденных врожденных пороков развития атавистической природы (см. разд. 13.3.4). Действительно, если в системе органов, эволюционирующей путем анаболии и девиаций, возможны атавистические пороки развития за счет рекапитуляции предковых состояний, тов случае архаллаксисов это исключается полностью.
Кроме ценогенезов и филэмбриогенезов в эволюции онтогенеза могут обнаруживаться еще и отклонения времени закладки органов — гетерохронии — и места их развития — гетеротопии. Как первые, таки вторые приводят к изменению взаимосоответствия развивающихся структур и проходят жесткий контроль естественного отбора. Сохраняются лишь те гетерохронии и гетеротопии, которые оказываются полезными. Примерами таких адаптивных гетерохронии являются сдвиги во времени закладок наиболее жизненно важных органов в группах, эволюционирующих по типу арогенеза. Так, у млекопитающих, ив особенности у человека, дифференцировка переднего мозга существенно опережает развитие других его отделов.
Гетеротопии приводят к формированию новых пространственных и функциональных связей между органами, обеспечивая в дальнейшем их совместную эволюцию. Так, сердце, располагающееся у рыб под глоткой, обеспечивает эффективное поступление крови в жаберные артерии для газообмена. Перемещаясь в загрудинную область у наземных позвоночных, оно развивается и функционирует уже в едином комплексе с новыми органами дыхания — легкими, выполняя и здесь в первую очередь функцию доставки крови к дыхательной системе для газообмена.
Гетерохронии и гетеротопии в зависимости оттого, на каких стадиях эмбриогенеза и морфогенеза органов они проявляются, могут быть расценены как филэмбриогенезы разных типов. Так, перемещение зачатков головного мозга, приводящее к его изгибу, характерному для амниот, и проявляющееся на начальных этапах его дифференцировки, является архаллаксисом, а гетеротопия семенника у человека из брюшной полости через паховый канал в мошонку, наблюдающаяся в конце эмбриогенеза после окончательного его формирования, — типичная анаболия.
Иногда процессы гетеротопии, одинаковые по результатам, могут являться
67
филэмбриогенезами разных типов. Например, у различных классов позвоночных очень часто встречается перемещение поясов конечностей. У многих групп рыб, ведущих придонный образ жизни, брюшные плавники (задние конечности) располагаются кпереди от грудных, ау млекопитающих и человека плечевой пояс и передние конечности в дефинитивном состоянии находятся значительно каудальнее места их первоначальной закладки. В связи с этим иннервация плечевого пояса у них осуществляется нервами, связанными нес грудными, ас шейными сегментами спинного мозга. У упомянутых выше рыб брюшные плавники иннервируются нервами не задних туловищных, а передних сегментов, расположенных кпереди от центров иннервации грудных плавников. Это свидетельствует о гетеротопии закладки плавников уже на стадии самых ранних зачатков, в то время как перемещение переднего пояса конечностей у человека происходит на более поздних этапах, когда иннервация их уже полностью осуществлена. Очевидно, в первом случае гетеротопия представляет собой архаллаксис, в то время как во втором — анаболию.
Ценогенезы, филэмбриогенезы, а также гетеротопии и гетерохронии, оказавшись полезными, закрепляются в потомстве и воспроизводятся в последующих поколениях до тех пор, пока новые адаптивные изменения онтогенеза не вытеснят их, заменив собой. Благодаря этому онтогенез не только кратко повторяет эволюционный путь, пройденный предками, но и прокладывает новые направления филогенеза в будущем. ОБЩИЕ ЗАКОНОМЕРНОСТИ ЭВОЛЮЦИИ ОРГАНОВ
Организм, или особь, — отдельное живое существо, в процессе онтогенеза проявляющее все свойства живого. Постоянное взаимодействие особи с окружающей средой в виде организованных потоков энергии и вещества поддерживает ее целостность и развитие. В структурном отношении организм представляет собой интегрированную иерархическую систему, построенную из клеток, тканей, органов и систем, обеспечивающих его жизнедеятельность. Подробнее остановимся на органах и системах жизнеобеспечения.
Органом называют исторически сложившуюся специализированную систему тканей, характеризующуюся отграниченностью, постоянством формы, локализации, внутренней конструкции путей кровообращения и иннервации, развитием в онтогенезе и специфическими функциями. Строение органов часто очень сложно. Большинство из них полифункционально, те. выполняет одновременно несколько функций. В тоже время в реализации какой-либо сложной функции могут участвовать различные органы.
Группу сходных по происхождению органов, объединяющихся для выполнения сложной функции, называют системой (кровеносная, выделительная и др.).
Если одну и туже функцию выполняет группа органов разного
68
происхождения, ее называют аппаратом Примером служит дыхательный аппарат, состоящий как из органов собственно дыхания, таки из элементов скелета и мышечной системы, обеспечивающих дыхательные движения.
В процессе онтогенеза происходит развитие, а часто и замена одних органов другими. Органы зрелого организма называют дефинитивными органы, развивающиеся и функционирующие только в зародышевом или личиночном развитии, — провизорными Примерами провизорных органов являются жабры личинок земноводных, первичная почка и зародышевые оболочки высших позвоночных животных (амниот).
В историческом развитии преобразования органов могут иметь прогрессивный или регрессивный характер. В первом случае органы увеличиваются в размерах и становятся более сложными по своему строению, во втором — уменьшаются в размерах, а их строение упрощается.
Если у двух организмов, находящихся на разных уровнях организации, обнаруживаются органы, которые построены по единому плану, расположены в одинаковом месте и развиваются сходным образом из одинаковых эмбриональных зачатков, то это свидетельствует о родстве данных организмов. Такие органы называют гомологичными Гомологичные органы часто выполняют одну и туже функцию (например, сердце рыбы, земноводного, пресмыкающегося и млекопитающего, нов процессе эволюции функции могут и меняться (например, передних конечностей рыб и земноводных, пресмыкающихся и птиц).
При обитании неродственных организмов в одинаковых средах у них могут возникать сходные приспособления, которые проявляются в возникновении аналогичных органов. Аналогичные органы выполняют одинаковые функции, строение же их, местоположение и развитие резко различны. Примерами таких органов являются крылья насекомых и птиц, конечности и челюстной аппарат членистоногих и позвоночных.
Строение органов строго соответствует выполняемым ими функциям. При этом в исторических преобразованиях органов изменение функций непременно сопровождается и изменением морфологических характеристик органа. Дифференциация и интеграция в эволюции органов
Основным принципом эволюции органических структур является принцип дифференциации Дифференциация представляет собой разделение однородной структуры на обособленные части, которые в силу различного положения, связей с другими органами и различных функций приобретают специфическое строение. Таким образом, усложнение структуры всегда связано с усложнением функций и специализацией отдельных частей. Дифференцированная структура выполняет несколько функций, и строение ее сложно.
Примером филогенетической дифференциации может являться эволюция кровеносной системы в типе хордовых. Так, у представителей подтипа бесчерепных
69
она построена очень просто один круг кровообращения, отсутствие сердца и капилляров в системе жаберных артерий.
В надклассе рыб имеются двухкамерное сердце и жаберные капилляры. У земноводных впервые появляется разделение кровеносной системы на два круга кровообращения, а сердце становится трехкамерным. Максимальная дифференциация характерна для кровеносной системы млекопитающих, сердце которых четырехкамерное, а в сосудах достигается полное разобщение венозного и артериального кровотоков.
Отдельные части дифференцирующейся, ранее однородной структуры, специализируясь на выполнении одной функции, становятся функционально все более зависимыми от других частей данной структуры и от организма в целом. Такое функциональное соподчинение отдельных компонентов системы в целостном организме называют интеграцией.
Четырехкамерное сердце млекопитающих представляет собой пример высокоинтегрированной структуры каждый отдел выполняет лишь свою специальную функцию, не имеющую никакого смысла в отрыве от функций других отделов. Поэтому сердце снабжено автономной системой функциональной регуляции в виде парасимпатического атриовентрикулярного нервного узла и при этом строго подчинено нейрогуморальной системе регуляции организма в целом.
Таким образом, одновременно с дифференциацией наблюдается и подчинение частей целостной системе организма, те. процесс интергации.
1   2   3   4   5   6   7   8   9   ...   23

перейти в каталог файлов
связь с админом