Главная страница

Пластичность мозга. Потрясающие факты отом, как мысли способны


Скачать 0,77 Mb.
НазваниеПластичность мозга. Потрясающие факты отом, как мысли способны
АнкорDoydzh_N_Plastichnost_mozga_Potryasayuschie_fakty_o_tom_kak_mysli_sposobny_menyat_strukturu_i_funktsii_nashego_mozga.fb2
Дата16.06.2018
Размер0,77 Mb.
Формат файлаpdf
Имя файла?art=6992350&format=a4.pdf&lfrom=241867179
оригинальный pdf просмотр
ТипДокументы
#39445
страница9 из 9
Каталогjulimia

С этим файлом связано 65 файл(ов). Среди них: German_Yury_Pavlovich_Ya_otvechayu_za_vse.doc, Левашов Николай - Последнее обращение к человечеству.doc, Lapin_A_Fotografia_kak_2_gl_Vozmozhnost_khudozhestva.pdf, d08d4d14fb30676abc089fa1b381ba36_285294_1518078285.gif, German_Yury_Pavlovich_Dorogoy_moy_chelovek.doc и ещё 55 файл(а).
Показать все связанные файлы
1   2   3   4   5   6   7   8   9
И снова крысы
Мерцених и его команда использовали микрокартирование для того, чтобы показать,
как происходит формирование карт у новорожденных крыс в критический период. Сразу же после рождения, в начале критического периода, слуховые карты крыс были недиффе- ренцированными и имели только две обширные области в коре головного мозга. Половина карты реагировала на любой звук высокой частоты. Вторая половина реагировала на любой
низкочастотный звук.
Когда во время сензитивного периода животное подвергалось воздействию звука опре- деленной частоты, эта простая организация менялась. Если оно постоянно слышало высо- кий звук В, то через некоторое время происходила активация только нескольких нейронов,
которые становились селективными в отношении этого звука. То же самое происходило,
когда животное подвергалось воздействию звуков Г, Д, Е и так далее. Теперь карта вместо двух обширных областей имела множество разных зон, каждая из которых реагировала на те или иные звуки, то есть стала дифференцированной.
Удивительная особенность коры головного мозга в критический период заключается в том, что она настолько пластична, что может меняться просто под воздействием нового стимула. Такая чувствительность позволяет младенцам и очень маленьким детям в сенси- тивный период развития языковых навыков без труда учиться новым звукам и словам, всего лишь слушая разговоры родителей. По окончании критического периода дети старшего воз- раста и взрослые, конечно же, могут учить языки, но теперь им приходится прикладывать
усилия для концентрации внимания.

Н. Дойдж. «Пластичность мозга. Потрясающие факты о том, как мысли способны менять структуру и функции нашего мозга»
79
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal,
WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Н. Дойдж. «Пластичность мозга. Потрясающие факты о том, как мысли способны менять структуру и функции нашего мозга»
80
Комментарии
1.
Введенное греками и просуществовавшее две тысячи лет представление, в рамках которого природа рассматривалась как огромный живой организм: Древние греки рассматривали природу как огромный живой организм. Они считали: если все вещи занимают место, значит,
они состоят из материи; если они двигаются, значит, они живые; и поскольку они действуют упорядоченно, то используют ум. Это была первая великая идея о природе, созданная человечеством. На самом деле греки проецировали себя на макрокосм и утверждали, что он живой и является отражением их самих. Уверенные в том, что природа живая, они не выступали против идеи пластичности или идеи о том, что орган мышления может расти.
Сократ в своей «Республике» утверждал, что человек может тренировать свое сознание так же, как гимнасты тренируют свои мышцы.
2.
Мозг начали рассматривать как механизм: Сравнение с машиной имело ряд важных достоинств; оно позволило проводить более здравые исследования мозга, основанные на наблюдении и свободные от мистицизма. Тем не менее такой способ суждения о живом мозге всегда был обедненным, и сами механицисты это понимали. Гарвей интересовался жизненными силами не меньше, чем механизмами, а Декарт утверждал, что описанное им сложное мозговое устройство приводится в действие душой, хотя и не мог объяснить, как это происходит. Таким образом, он «разрезал» человека на две части: живая
(нематериальная) душа может изменяться, и материальный мозг, который на это неспособен.
Другими словами, он поместил, по остроумному выражению одного философа, «призрака в машину». Кстати говоря, на создание модели нервной системы Декарта вдохновили гидравлические фонтаны в Сен-Жермен-ан-Лей, где подаваемая с помощью помпы вода оживляла двигающиеся скульптуры мифологических персонажей.
3.
Идея локализационизма также была применена к чувствам, что положило начало теории о том, что каждое из наших чувств… специализируется на обнаружении одной из разнообразных форм окружающей нас энергии: С начала девятнадцатого века ученые стремились понять, что определяет различие наших чувств, и это порождало множество дискуссий. Некоторые утверждали, будто все наши нервы переносят один и тот же вид энергии и что единственное различие между зрением и осязанием носит количественный характер: глаз может улавливать пучок света, потому что он более тонкий и чувствительный орган, чем орган осязания. Другие полагали, что нервы каждого органа чувств переносят энергию разных видов, соответствующих конкретному чувству, и что нервы одного органа чувств не могут замещать нервы другого органа чувств или выполнять его функции. Эта точка зрения победила и была закреплена в виде «закона специфической энергии нервов»,
предложенного Иоганнесом Мюллером в 1826 году. Мюллер писал: «Нерв каждого органа чувств способен на формирование только одного определенного типа ощущений, а не тех,
которые присущи другим органам чувств; таким образом, нерв одного чувства не может занять место и выполнять функции нерва другого чувства». J. Müller. 1838. Handbuch der
Physiologie des Menschen, bk. 5, Coblenz, reprinted in R.J. Herrnstein and E.G. Boring, eds. 1965.
A source book in the history of psychology. Cambridge, MA: Harvard University Press, 26–33,
especially 32.
4.

Н. Дойдж. «Пластичность мозга. Потрясающие факты о том, как мысли способны менять структуру и функции нашего мозга»
81
Бач-и-Рита определил, что кожа и ее рецепторы прикосновения могут заменить сетчатку глаза: С технической точки зрения, картинка может формироваться на двухмерной поверхности как кожи, так и сетчатки глаза, потому что они обнаруживают информацию одновременно. А благодаря последовательным, или серийным, изменениям информации они обе могут формировать движущиеся картинки.
5.
Бач-и-Рита понял, что участки… гораздо более однородны: Об относительной однородности коры головного мозга свидетельствует тот факт, что ученые, работающие с крысами,
могут трансплантировать кусочки «зрительной» коры в ту часть мозга, которая обычно обрабатывает осязательную информацию, и эти трансплантаты начнут обрабатывать сигналы, поступающие от органов осязания. См. J. Hawkins and S. Blakeslee. 2004. On intelligence. New York: Times Books, Henry Holt & Co., 54.
6.
Бач-и-Рита посвятил изучению исключений из теории локализационизма: В 1977 году с помощью новой методики было доказано, что (вопреки утверждению Брока, что человек говорит с помощью левого полушария) 95 % здоровых правшей обрабатывают языковую информацию в левом полушарии, а оставшиеся 5 % – в правом. Семьдесят процентов левшей обрабатывают эту информацию в левом полушарии, но 15 % делают это с помощью правого полушария, а еще 15 % используют для этого оба полушария. S.P. Springer and G.
Deutsch, G. 1999. Left brain right brain: Perspectives from cognitive neuroscience. New York:
W.H. Freeman and Company, 22.
7.
Он обнаружил работу Мари-Жан-Пьера Флоренса: Флоренс доказал, что при удалении у птиц больших частей мозга психические функции утрачиваются. Но, наблюдая за птицами в течение целого года, он также обнаружил, что утраченные функции часто восстанавливаются. Он пришел к заключению, что мозг птиц реорганизовал сам себя, так как его оставшиеся части могли взять на себя выполнение утраченных функций. Флоренс утверждал, что нервную систему и мозг следует рассматривать как динамичное целое, а не просто сумму частей, и что преждевременно предполагать, что психические функции имеют неизменное местоположение в мозге. M.-J.-P. Flourens. 1824/1842. Recherches expérimentales sur les propriétés et les fonctions du systéme nerveux dans les animaux vertébrés. Paris: Ballière.
Бач-и-Риту также вдохновили идеи таких ученых, как Карл Лэшли, Пол Уэйс и Чарльз
Шеррингтон, которые доказывали, что мозг и нервная система могут, в случае удаления частей или нарушения связи между ними, заново обретать утраченные функции.
8.
На этапе закрепления: В настоящее время высказываются предположения, что на этапе закрепления нейроны вырабатывают новые белки и меняют свою структуру. См. E.R. Kandel.
2006. In search of memory. New York: W.W. Norton & Co., 262.
9.
Упускают огромное количество информации: Сканирование мозга, такое как функциональная магнитно-резонансная томография, позволяет измерять активность в участке мозга размером в 1 мм. Однако размер нейрона в поперечнике, как правило, равен тысячной миллиметра. S.P. Springer and G. Deutsch. 1999. Left brain, right brain: Perspectives from cognitive neuroscience. New York: W.H. Freeman & Co., 65.

Н. Дойдж. «Пластичность мозга. Потрясающие факты о том, как мысли способны менять структуру и функции нашего мозга»
82
10.
«Никто не обращал внимания»: Джон Каас пытался преодолеть предубеждение против существования пластичности мозга у взрослых людей, распространенное ранее среди исследователей, занимавшихся зрительным восприятием. Он картировал зрительную кору взрослого человека, а затем перекрыл доступ информации, поступающей в нее от сетчатки глаза. С помощью повторного картирования ему удалось продемонстрировать, что всего за несколько недель на карте поврежденного участка коры появились новые рецептивные поля. Один из обозревателей Science отверг статью с описанием исследования Кааса, считая его результаты невозможными. В конце концов она была опубликована в J.H. Kaas, L.A.
Krubitzer, Y.M. Chino, A.L. Langston, E.H. Polley, and N. Blair. 1990. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 248(4952): 229–
31. Merzenich assembled the scientific evidence for plasticity in D.V. Buonomano and M.M.
Merzenich. 1998. Cortical plasticity: From synapses to maps. Annual Review of Neuroscience,
21:149-86.
11.
У каждого из них есть общая карта для сросшихся пальцев вместо двух для каждого в отдельности: Использованная в данном случае методика сканирования называется магнитоэнцефалографией (МЭГ). Нейронная активность приводит к возникновению электрической активности и магнитных полей. Магнитоэнцефалограф обнаруживает эти магнитные поля и сообщает нам, где возникает активность. A. Mogilner, J.A. Grossman, U.
Ribary, M. Joliot, J. Volkmann, D. Rapaport, R.W. Beasley, and R. Llinás. 1993. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proceedings of the
National Academy of Sciences, USA, 90(8): 3593-97.
12.
Как подобный топографический порядок возникает на карте мозга: При создании топографических карт природа осуществляет два преобразования: пространственная организация (пальцев кисти) трансформируется в организованную временную последовательность, которая затем преобразуется в пространственную организацию
(пальцев кисти на карте мозга). Яркой демонстрацией возможностей мозга по созданию нового топографического порядка вместо старого может служить история одного пациента из Франции. В 1996 году мужчине из Лиона ампутировали обе кисти, а затем трансплантировали две новые кисти. До трансплантации французские врачи провели функциональную магнитно-резонансную томографию для картирования двигательной коры мужчины, которая, как и ожидалось, показала, что в результате полной утраты входящей информации от кистей рук его мозг создал в их карте аномальную топографию. В 2000 году после трансплантации обеих кистей они составляли карту двигательной коры через два,
четыре и шесть месяцев после операции и выяснили, что трансплантированные руки начали
«распознаваться и активироваться чувствительной корой», а карта обрела нормальную топографическую организацию. P. Giraux, A. Sirigu, F. Schneider, and J-M. Dubernard. 2001.
Cortical reorganization in motor cortex after graft of both hands. Nature Neuroscience, 4(7): 691–
92.
13.
Топографический порядок появляется из-за того, что многие из наших повседневных видов деятельности предполагают повторение последовательных действий в определенном порядке: Выяснив, что карты мозга формируются под влиянием распределения

Н. Дойдж. «Пластичность мозга. Потрясающие факты о том, как мысли способны менять структуру и функции нашего мозга»
83
поступающей к ним информации по времени, он тем самым раскрыл загадку своего первого эксперимента, во время которого он перерезал нервы кисти руки обезьяны, и они перемешались – «провода перекрестились», – но при этом у обезьяны остались нормально организованные топографические карты. Даже после перемешивания нервов сигналы от пальцев поступали в фиксированной временной последовательности – большой палец, затем указательный, затем средний, – обеспечивая топографическую организации карт. См. M.M.
Merzenich, 2001, 69.
14.
Обученные нейроны активировались быстрее: Команда ученых обнаружила, что нейроны могут обрабатывать второй сигнал через 15 миллисекунд после первого. Они также определили, что временные фрагменты, в течение которых мозг обрабатывает и интегрирует информацию, могут составлять от десятков миллисекунд до нескольких десятых секунды.
Это исследование давало ответ на вопрос: когда мы говорим, что нейроны, активирующиеся вместе, соединяются между собой, что конкретно мы имеем в виду под словом «вместе»?
Совершенно одновременно? Проанализировав свою собственную работу и работы других ученых, Мерцених и Дженкинс определили, что в данном случае «вместе» означает, что нейроны должны активироваться в промежутке от тысячных до десятых долей секунды.
M.M. Merzenich and W.M. Jenkins. 1995. Cortical plasticity, learning, and learning dysfunction.
In B. Julesz and I. Kovács, eds., Maturational windows and adult cortical plasticity. SFI studies in the sciences of complexity. Reading, MA: Addison-Wesley, 23:247 – 64.
1   2   3   4   5   6   7   8   9

перейти в каталог файлов
связь с админом