Главная страница
qrcode

Мартин Форд. Роботы наступают. Правда ли, что усердие и талант перестанут быть залогом жизненных достижений


НазваниеПравда ли, что усердие и талант перестанут быть залогом жизненных достижений
АнкорМартин Форд. Роботы наступают.pdf
Дата19.01.2018
Размер2,99 Mb.
Формат файлаpdf
Имя файлаMartin_Ford_Roboty_nastupayut.pdf
оригинальный pdf просмотр
ТипДокументы
#40006
страница7 из 29
Каталог
1   2   3   4   5   6   7   8   9   10   ...   29
Глава 4
Белые воротнички под угрозой
11 октября 2009 г. Los Angeles Angels обыграли Boston Red Sox в плей- офф Американской лиги, заработав право сразиться с New York Yankees за звание чемпиона лиги и место в Мировой серии. Для Angels эта победа была наполнена особым смыслом: всего за шесть месяцев до того один из самых многообещающих игроков команды питчер Ник Аденхарт погиб в аварии, виновником которой был пьяный водитель. Один спортивный журналист начал свою статью об игре следующими словами:
«Когда в воскресенье на стадионе „Фенуэй Парк“ в девятом иннинге Angels проигрывали с разницей в две пробежки, никто уже не верил в их победу, но лосанджелесцы сумели переломить ход игры благодаря важнейшему синглу Владимира Гуэрреро,
вырвав победу у Boston Red Sox со счетом 7–6.
Гуэрреро принес Angels два рана. Cчет на подаче был 2–4.
"Если вспоминать о Нике Аденхарте и апрельской трагедии в
Анахайме, да, пожалуй, это был самый важный хит [в моей карьере], – сказал Гуэрреро. – Так что я посвящаю эту победу своему бывшему товарищу по команде, парню, которого с нами уже нет".
Гуэрреро хорошо себя проявил во всех играх сезона,
особенно в дневных. В дневных играх он показал OPS [процент занятия базы плюс слаггинг] на уровне 0,794. Он выбил пять хоумранов и принес 13 ранов в 26 дневных играх»
{117}
Автору этого текста, наверное, вряд ли стоит рассчитывать на какие- либо награды за свой писательский труд. Тем не менее приведенный выше рассказ – поразительное достижение: дело не в том, что он хорошо читается, в нем нет грамматических ошибок и он содержит точное описание бейсбольного матча; просто его автор – компьютерная программа.
Эту программу (под названием StatsMonkey) создали студенты и преподаватели Лаборатории интеллектуальной информации (Intelligent
Information) при
Северо-Западном университете.
StatsMonkey предназначена для автоматизации процесса написания материалов о спорте
за счет превращения объективных данных об отдельно взятой игре в захватывающее повествование. Возможности системы выходят далеко за рамки простого перечисления фактов; скорее, она описывает события,
добавляя в рассказ все те основные атрибуты спортивной журналистики,
которые присущи работам журналистов-людей. Для выявления значимых событий, имевших место во время матча, StatsMonkey выполняет статистический анализ; затем она использует естественный язык для создания текста, в котором кратко описывается ход игры, а также уделяется особое внимание решающим моментам и ключевым игрокам,
определившим ее исход.
В 2010 г. исследователи из Северо-Западного университета, которые руководили работавшей над
StatsMonkey группой студентов,
специализировавшихся в области вычислительной техники и
журналистики, получили финансовую поддержку от венчурных инвесторов и основали новую компанию под названием Narrative Science, Inc. с целью коммерциализации данной технологии. Компания наняла лучших специалистов в области вычислительных систем и инженеров; новая команда избавилась от первоначального кода StatsMonkey и создала значительно более мощную и комплексную систему искусственного интеллекта, которая получила название Quill.
Технология Narrative Science используется крупнейшими средствами массовой информации, в том числе Forbes, для написания статей на различные темы, включая спорт, бизнес и политику. Разработанное компанией ПО генерирует новостные материалы приблизительно каждые
30 секунд; при этом многие из них публикуются на популярных сайтах,
которые предпочитают не афишировать свою связь с данным сервисом. В
2011 г. в ходе отраслевой конференции корреспондент Wired Стивен Леви попросил одного из основателей Narrative Science Кристиана Хэммонда оценить, какой будет доля новостных материалов, написанных с помощью программных алгоритмов, в ближайшие 15 лет. В ответ он услышал: более
90 %
{118}
Narrative Science строит далекоидущие планы, не собираясь ограничиваться одной лишь индустрией новостей. Назначение Quill –
служить универсальной платформой для анализа и написания нарративных текстов, составлять высококачественные отчеты как для внутреннего пользования, так и для публикации в ряде отраслей. Работа Quill начинается со сбора данных из различных источников, включая базы данных о транзакциях, системы финансовой и торговой отчетности, сайты и даже социальные медиа. Затем система выполняет анализ собранных
данных, выбирая самые важные и интересные факты и выводы. Наконец,
она сплетает из всей этой информации связное повествование, которое, по заверениям компании-разработчика, сопоставимо с результатами труда лучших аналитиков. После соответствующей настройки система Quill способна практически мгновенно формировать бизнес-отчеты с заданной периодичностью – и все это без вмешательства человека
{119}
. Учитывая,
что одним из первых инвесторов, поддержавших Narrative Science в самом начале пути, было In-Q-Tel – подразделение ЦРУ, отвечающее за венчурные проекты, можно с большой долей уверенности утверждать, что разработанные компанией инструменты будут использоваться для автоматического преобразования потоков необработанных данных,
собираемых специалистами американской разведки, в удобный для понимания повествовательный формат.
Пример технологии Quill демонстрирует, насколько уязвимыми для автоматизации оказываются задачи, которые когда-то считались исключительной прерогативой высококвалифицированных профессионалов с высшим образованием. Разумеется, связанная со знаниями работа обычно предполагает наличие широкого круга навыков и талантов. Среди прочего аналитик должен уметь извлекать информацию из различных систем, строить статистические или финансовые модели, а затем доходчиво доносить результаты своей работы до аудитории в виде отчетов или презентаций. Может показаться, что писательский труд – в котором, как ни крути, столько же искусства, сколько и науки, – относится к видам деятельности, в последнюю очередь поддающимся автоматизации.
Но, как оказывается, это совсем не так, а алгоритмы с каждым днем становятся все более совершенными. Более того, учитывая то, что для автоматизации профессий, связанных с умственным трудом, достаточно одного лишь ПО, соответствующие рабочие места во многих случаях могут оказаться более уязвимыми, чем рабочие места для людей с низкой квалификацией, предполагающие физический труд.
Стоит отметить, что письменная речь относится к тем навыкам,
которые, судя по жалобам работодателей, чаще всего недостаточно хорошо развиты у выпускников колледжей. По данным одного из недавних опросов работодателей, около половины всех принятых на работу выпускников,
проведших в колледже два года, и более четверти выпускников с четырехлетним образованием не умеют письменно излагать свои мысли, а в некоторых случаях еще и недостаточно хорошо читают
{120}
. Если интеллектуальное ПО способно, как это утверждают специалисты Narrative

Science, составить конкуренцию самым талантливым аналитикам, рост потребности в специалистах, чья работа связана с умственным трудом, в будущем оказывается под большим вопросом. Это касается всех выпускников колледжей, в особенности наименее подготовленных.

Большие массивы данных и машинное обучение
Система написания нарративных текстов Quill – лишь один из многих примеров нового прикладного ПО, разрабатываемого с целью обеспечения максимально эффективного использования тех огромных объемов данных,
которые собирают и хранят частные компании, организации и государственные органы повсюду в мире. По некоторым оценкам, общий объем хранимых в мире данных в настоящее время измеряется тысячами экзабайт (1 экзабайт равен 1 млрд гигабайт); причем эта величина постоянно растет в соответствии с законом, напоминающим закон Мура,
удваиваясь приблизительно каждые три года
{121}
. Почти все эти данные сегодня хранятся в цифровом формате, а значит, компьютеры могут работать с ними напрямую. Одни только серверы Google ежедневно обрабатывают около 24 петабайт (1 петабайт равен 1 млн гигабайт) данных,
главным образом относящихся к поисковым запросам миллионов пользователей
{122}
Все эти данные поступают из множества разнородных источников.
Если взять один только Интернет, это будут данные о посещениях сайтов,
поисковых запросах, сообщениях электронной почты, общении в социальных медиа, переходах по рекламным ссылкам и многое, многое другое. Если брать бизнес-сектор, то следует упомянуть данные о транзакциях, договорах с клиентами, внутренних коммуникациях, а также данные из финансовых, бухгалтерских и маркетинговых систем. На заводах, в больницах, автомобилях, самолетах и бесчисленных устройствах бытового и промышленного назначения непрерывно собираются данные в режиме реального времени.
Подавляющее большинство этих данных представляют собой то, что специалисты по компьютерным вычислениям называют
«неструктурированными» данными. Другими словами, они поступают в различных форматах, которые трудно поддаются сопоставлению или сравнению. Это очень сильно отличает их от содержимого традиционных реляционных баз данных, в которых информация хранится в виде аккуратно упорядоченных строк и столбцов, что обеспечивает высокую скорость, надежность и точность поиска. Обработка неструктурированных данных потребовала создания новых инструментов, специально предназначенных для углубленного анализа информации, собранной из различных источников. Стремительный прогресс в этой области – всего
лишь еще один пример того, как компьютеры, пускай и в довольно упрощенной форме, учатся делать то, что совсем недавно было доступно только людям. Все-таки способность непрерывно обрабатывать поток неструктурированной информации из множества различных источников во внешней среде всегда относилась к числу уникальных для человека механизмов адаптации. Разница, разумеется, в том, что человек никогда не сможет оперировать большим объемом данных в тех же масштабах, что и компьютеры. Большие данные оказывают революционное воздействие на широкий круг областей, включая бизнес, политику, медицину и практически все группы естественных и социальных наук.
Благодаря большим данным крупнейшие ретейлеры могут получить небывало подробное представление о покупательских предпочтениях отдельных потребителей, что дает им возможность формулировать адресные предложения и тем самым увеличивать собственную выручку,
при этом повышая лояльность клиентов. Полицейские по всему миру обращаются к алгоритмическому анализу для прогнозирования наиболее вероятных мест и периодов совершения преступлений и распределяют свои силы в соответствии с полученными результатами. На специальном портале жители Чикаго могут ознакомиться как с ретроспективными, так и с актуальными данными, относящимися к самым разным сферам жизни и отражающими самые разные аспекты существования в большом городе,
включая потребление энергии, уровень преступности, показатели эффективности работы транспортной инфраструктуры, школ, учреждений здравоохранения и даже количество выбоин и ям на дорогах, которые латали в конкретный период времени. Благодаря инструментам, которые реализуют новые способы визуализации данных, полученных путем анализа общения в социальных медиа, а также поступающих с датчиков,
встроенных в двери, турникеты и эскалаторы, градостроители и сотрудники городской администрации могут наблюдать за тем, как люди перемещаются, работают и общаются в пределах городской среды, получая возможность оперативно корректировать свои действия с целью повышения эффективности работы городских служб и создания максимально комфортных условий для жизни.
Однако у этой тенденции есть и обратная сторона. Деятельность компании Target, Inc. является примером куда более спорного подхода к использованию огромных массивов чрезвычайно подробных данных о клиентах в коммерческих целях. Эта компания наняла специалиста по анализу и обработке данных, который обнаружил сложный набор корреляций, позволяющих с очень большой долей вероятности
предсказывать наличие беременности на раннем сроке у покупательниц на основе анализа продаж по двадцати пяти различным видам косметической и медицинской продукции. Проводимый компанией анализ был настолько точным, что даже позволял с высокой степенью точности определять срок беременности у конкретной женщины. Получив эти данные, сотрудники
Target начинали забрасывать женщин предложениями о покупке товаров для беременных, да еще и на столь раннем сроке, что во многих случаях ближайшее окружение женщины даже не знало о ее положении. В начале
2012 г. в The New York Times была опубликована статья, в которой рассказывалось об одном любопытном случае: ничего не подозревавший отец девочки-подростка пожаловался руководству магазина на неподобающие рекламные материалы, присылаемые на почтовый адрес семьи, а потом узнал, что сотрудники Target фактически были лучше осведомлены о жизни его дочери, чем он сам
{123}
. Некоторые критики опасаются, что эта не самая приятная история – лишь начало и что большие данные все чаще и чаще будут использоваться для получения информации,
которая может нарушать неприкосновенность частной жизни или даже угрожать свободе.
Выводы, получаемые при анализе больших данных, как правило,
основываются исключительно на корреляциях и ничего не говорят о причинах изучаемого феномена. Алгоритм может выяснить, что если A
соответствует действительности, то и B, скорее всего, тоже верно. Но он не способен установить причинно-следственную связь между A и B и уж тем более не может установить, обусловлены ли A и B каким-либо иным внешним фактором. Во многих случаях, однако, и в особенности в мире бизнеса, где абсолютным критерием успеха является прибыльность и эффективность, а не глубина понимания, даже простая корреляция сама по себе может представлять очень большую ценность. Большие данные могут стать для менеджмента источником подробнейших сведений по самому широкому кругу вопросов: все – от параметров работы каждого отдельного станка до общих результатов работы международной корпорации – может быть потенциально подвергнуто анализу с такой степенью подробности,
которая прежде была просто невозможна.
Непрерывно увеличивающийся в объеме массив данных все чаще рассматривается в качества своего рода ресурса, который, если за него взяться как следует, может стать источником ценной информации, причем не только сейчас, но и в будущем. Глядя на компании в добывающих отраслях (например, нефтегазовой), год за годом с успехом пользующихся плодами технического прогресса, легко представить, как, вооружившись
возросшей вычислительной мощью компьютеров, а также усовершенствованным ПО и новыми методами анализа, корпорации во всех секторах экономики препарируют данные, извлекая из них знания,
которые сразу превращаются в дополнительную прибыль. Более того, как раз вера инвесторов в то, что все так и будет, судя по всему, и является главным фактором, обуславливающим такую громадную рыночную стоимость компаний, работающих с большими объемами данных, т. е.
таких, как Facebook.
Машинное обучение – метод, при котором компьютер перебирает данные и, по сути, пишет собственную программу на основе обнаруженных статистических закономерностей, – является одним из наиболее эффективных средств извлечения самой ценной информации. Как правило, процесс машинного обучения разбивается на два этапа: сначала алгоритм обучается на имеющихся данных, а затем применяется к новой информации для решения похожих задач. Самый очевидный пример использования машинного обучения на практике – фильтры спама в электронной почте. На этапе обучения алгоритм обрабатывает миллионы сообщений, заранее помеченных как спам или не спам. При этом никто не садится и не программирует систему напрямую так, чтобы она могла распознавать все мыслимые способы написания слова «виагра». Вместо этого программа учится самостоятельно распознавать нужную информацию. Результатом обучения является приложение, которое способно автоматически идентифицировать основной массив нежелательной почты и при этом постоянно совершенствоваться и адаптироваться по мере появления новых образцов спама. Алгоритмы машинного обучения, работающие на основе тех же самых принципов,
используются и при подборе рекомендуемых книг на Amazon, фильмов –
на Netflix и потенциальных партнеров – на Match.
Одним из самых впечатляющих примеров эффективности машинного обучения стал созданный Google онлайн-переводчик. Используемые в нем алгоритмы основаны на подходе, который можно назвать подходом Rosetta
Stone
[24]
и который предполагает анализ и сравнение миллионов страниц текста, который уже был переведен на различные языки. Разработчики
Google начали с официальных документов Организации Объединенных
Наций, а затем расширили круг исходных текстов, включив в него содержимое Всемирной паутины. Чтобы найти достаточное количество примеров для ненасытных алгоритмов самообучения, они использовали поисковую систему Google. Если судить по одному только количеству документов, использовавшихся в процессе обучения системы, то
становится очевидно, что ничего подобного прежде не было. Специалист в области компьютерных вычислений Франц Ок, который руководил проектом, отметил, что его команда выстроила «очень-очень большие языковые модели, намного более масштабные, чем все, что было прежде за всю историю человечества»
{124}
В 2005 г. система Google приняла участие в ежегодном соревновании по машинному переводу, проводимом Национальным бюро стандартов и технологий, подразделением Министерства торговли США, отвечающим за публикацию стандартов измерения. Алгоритмы машинного обучения
Google легко обошли всех остальных участников. До этого победа обычно доставалась лингвистам и языковедам, которые тратили немало сил на то,
чтобы помочь своим системам перевода не увязнуть в трясине противоречивых и непоследовательных грамматических правил того или иного естественного языка. Главный вывод, который можно сделать из этой победы: даже самые лучшие программисты не способны создать что- нибудь сравнимое с тем объемом знаний, который заключен в наборе данных большого размера. По качеству система Google пока еще не может конкурировать с квалифицированными переводчиками-людьми, но главное ее преимущество – она способна работать более чем с пятьюстами языковыми парами, переводя в обе стороны. Это самая настоящая революция в области общения: впервые в человеческой истории практически любой может мгновенно и совершенно бесплатно получить приблизительный перевод почти любого документа на любом языке.
Существует ряд подходов к машинному обучению, но наиболее эффективной и удивительной является методика, связанная с
использованием искусственных нейронных сетей
– систем,
спроектированных в соответствии с теми же фундаментальными принципами, что лежат в основе работы человеческого мозга. Мозг состоит из 100 млрд нейронных клеток и многих триллионов межклеточных связей,
но для построения эффективных обучаемых систем достаточно куда более простой системы искусственных нейронов.
Работу отдельного нейрона можно сравнить с выскакивающими пластиковыми фигурками развивающих игрушек, которые так нравятся малышам. Когда ребенок нажимает клавишу, перед ним появляется цветная фигурка – это может быть, например, персонаж мультфильма или животное. Легкое нажатие на клавишу ни к чему не приводит. Даже если нажать чуть сильнее, все равно ничего не произойдет. Но достаточно достигнуть определенного порога усилия – и фигурка тут как тут.
Приблизительно так и работает нейрон, за исключением того, что вместо
клавиши для его активации требуется определенная комбинация входных параметров.
Чтобы наглядно представить нейронную сеть, вообразите устройство наподобие машины Руба Голдберга
[25]
, которое состоит из нескольких таких развивающих игрушек, составленных рядами на полу. Над каждой клавишей, приводящей в действие фигурки, три механических пальца.
Правда, вместо того, чтобы просто выпрыгивать, фигурки так расположены, что срабатывание одной из них приводит к опусканию нескольких механических пальцев в последующих рядах игрушек и нажатию связанных с ними клавиш. Ключевым фактором, определяющим способность нейронной сети обучаться, является возможность регулирования усилия, с которым палец нажимает на соответствующую клавишу.
Чтобы обучить нейронную сеть, необходимо загрузить имеющиеся данные в первый ряд нейронов. В качестве примера можно представить ввод изображений написанных от руки писем. При получении входных данных некоторые механические пальцы нажимают на кнопки с различным усилием, уровень которого зависит от их настройки. Это, в свою очередь,
приводит к активации некоторых нейронов и срабатыванию клавиш в следующем ряду. Результатом срабатывания последнего ряда нейронов становятся выходные данные, т. е. ответ. В нашем примере в качестве выходных данных будет получен двоичный код, который укажет на букву алфавита, соответствующую полученному на входе изображению. Сначала ответ будет неверным. Но нужно помнить, что у нашей машины есть встроенный механизм сравнения и формирования обратной реакции.
Выходные данные сравниваются с правильным ответом, который известен,
что автоматически приводит к корректировке усилия у механических пальцев во всех рядах, а это, в свою очередь, изменяет последовательность срабатывания нейронов. По мере ввода в сеть все новых и новых изображений, сопровождающегося непрерывной калибровкой усилия, с которым пальцы нажимают на клавиши, сеть будет все чаще и чаще выдавать верный ответ. Обучение считается оконченным, когда достигается состояние, при котором частота правильных ответов перестает расти.
Если вкратце, то именно так выглядит процесс, благодаря которому нейронные сети приобретают способность распознавать изображения и речь, переводить с одного языка на другой и выполнять множество иных задач. Результатом обучения является программа – по сути, список всех последних настроек механических пальцев, располагающихся над клавишами активации нейронов, – которая затем может быть использована
для конфигурирования новых нейронных сетей. Иными словами, после загрузки программы эти сети смогут автоматически формировать ответы на основе новых данных без повторения обучения.
Впервые идея искусственной нейронной сети возникла в конце 1940-х гг., когда был проведен ряд экспериментов. В течение долго времени они использовались для выявления закономерностей. Однако в последние годы был совершен ряд революционных открытий, которые привели к значительному увеличению производительности, особенно при использовании многоярусных нейронных сетей, построенных по технологии, которая получила название «углубленное обучение» (deep learning). Системы углубленного обучения уже применяются при распознавании речи в голосовом помощнике Siri компании Apple;
ожидается, что их внедрение будет способствовать ускорению темпов развития во многих прикладных областях, предполагающих выявление и анализ закономерностей. Например, в 2011 г. ученые из Университета
Лугано в Швейцарии спроектировали нейронную сеть со способностью к углубленному обучению, которая смогла правильно идентифицировать свыше 99 % изображений из обширной базы данных о дорожных знаках – с таким уровнем точности не смог сравниться никто из соревновавшихся с системой людей. Исследователи из Facebook также разработали экспериментальную систему, состоящую из девяти уровней искусственных нейронов, которая может определить, что на двух фотографиях изображен один и тот же человек, в 97,25 % случаев, несмотря на условия освещения и ориентацию лица. Для сравнения: участвовавшие в эксперименте люди давали правильный ответ в 97,53 % случаев
{125}
Один из ведущих экспертов в этой области Джеффри Хинтон из
Университета Торонто отмечает, что технология углубленного обучения
«отлично поддается масштабированию. Просто сделайте ее больше и быстрее, и она будет лучше работать»
{126}
. Другими словами, даже если оставить в стороне совершенствование принципов работы таких сетей,
можно с уверенность утверждать, что системы машинного обучения на основе сетей со способностью к углубленному обучению ждет этап стремительного роста – этот простой вывод следует из закона Мура.
По мере того как работодатели – и в особенности большие корпорации – все больше и больше усиливают контроль над режимом работы и социальными связями своих сотрудников, постоянно расширяя круг отслеживаемых показателей и параметров, большие данные и используемые для их обработки сложные алгоритмы начинают напрямую
влиять на условия работы и карьерный рост сотрудников. Так называемая
«аналитика трудовых ресурсов» (people analytics) играет все большую роль при принятии компаниями решений о найме, увольнении, оценке результативности и повышении сотрудников. Объем собираемых данных о конкретных людях и о выполняемой ими работе поражает воображение.
Некоторые компании контролируют каждое нажатие клавиши каждым сотрудником. Сообщения электронной почты, расшифровки телефонных разговоров, поисковые запросы, обращение к базам данным, доступ к файлам, нахождение на территории работодателя – все эти, а также другие данные самых разных видов, точное количество которых даже трудно определить, подлежат сбору и анализу (в одних случаях с согласия самих сотрудников, а в других – без их ведома)
{127}
. Разумеется, изначально целью сбора и анализа всех этих данных являются повышение эффективности управления и оценка результатов работы сотрудников. Но в определенный момент эти данные могут быть использованы совсем для других целей: например, для разработки ПО, автоматизирующего большую часть выполняемой работы.
Если говорить о последствиях революции в области больших данных для будущего профессий, связанных с умственным трудом, вероятно, стоит выделить два самых главных. Во-первых, во многих случаях собранных данных может оказаться достаточно для автоматизации конкретных задач и даже целых видов профессиональной деятельности. Подобно тому, как человек может научиться новой профессии, изучив опыт предшественников и опробовав его на практике при решении конкретных задач, современные сложные алгоритмы, по сути, способны проделать то же самое и полностью заменить человека. Чтобы убедиться в этом, достаточно вспомнить, что в ноябре 2013 г. компания Google подала заявку на регистрацию патента,
описывающего систему, предназначенную для автоматического создания персонализированных сообщений электронной почты и ответов в социальных сетях
{128}
. Принцип работы системы таков: сначала она анализирует существующие письма и посты в социальных сетях определенного человека. Основываясь на полученных знаниях, она затем автоматически пишет ответы на новые сообщения электронной почты,
сообщения в Twitter и посты в блоге, используя при этом характерные для данного человека индивидуальный стиль и манеру письма. Легко представить, как такая система может быть использована в будущем для автоматизации существенной части повседневного общения.
Еще одним примером, указывающим на наиболее вероятное
направление дальнейшей эволюции технологий автоматизации с
использованием больших данных, являются роботы-автомобили компании
Google, впервые представленные в 2011 г. Инженеры Google сразу отказались от идеи создания робота, который бы мог заменить человека за рулем обычного автомобиля, – это в любом случае было бы за пределами возможностей современных технологий искусственного интеллекта.
Вместо этого они упростили задачу, спроектировав высокопроизводительную систему обработки данных и поставив ее на колеса. Автомобили Google перемещаются в пространстве, опираясь на точные данные о местоположении, определяемом с помощью GPS в сочетании с огромным объемом чрезвычайно подробных картографических данных. Разумеется, автомобили также оснащены радарами, лазерными дальномерами и иными системами, обеспечивающими непрерывный поток актуальных данных и помогающими машинам адаптироваться к изменению условий и новым ситуациям, таким, например, как выход пешехода на проезжую часть. Причислять водителей к белым воротничкам, конечно,
никто не будет, но использованная Google общая стратегия может быть легко применена во множестве других областей. Сначала берется огромный массив исторических данных, на основе которого создается общая «карта»,
и затем эта «карта» используется специальными алгоритмами при выполнении рутинных задач. Следующий шаг – в игру вступают самообучающиеся системы, которые способны адаптироваться к
отклонениям от алгоритма и непрогнозируемым ситуациям. В результате получаем интеллектуальное ПО, которое может качественно выполнять многие виды работ, связанные с умственным трудом.
Во-вторых, пожалуй, более важным последствием внедрения технологий обработки больших данных для работников умственного труда станут изменения в работе организаций и методах управления ими.
Большие данные и алгоритмы прогнозирования могут полностью изменить сам характер умственного труда и количество связанных с ним рабочих мест в организациях во всех отраслях. Прогностическая информация,
которая может быть получена из данных, будет все чаще использоваться в качестве замены таким человеческим качествам, как опыт и способность суждения. А по мере перехода управленцев к принятию решений на основе результатов обработки данных с помощью автоматизированных средств потребность в обширной аналитической и управленческой инфраструктуре с привлечением значительных людских ресурсов будет неуклонно снижаться. Таким образом, там, где сегодня требуется целая команда аналитиков, которые собирают информацию и доводят результаты анализа
до сведения руководителей разного уровня, в будущем будет достаточно одного управленца с мощным алгоритмом. Структура организаций,
вероятно, будет упрощаться. Необходимость в руководителях среднего звена отпадет, а рабочие места для квалифицированных аналитиков просто- напросто исчезнут, так как большинство связанных с анализом задач смогут выполнять обычные сотрудники.
Одним из ярчайших примеров того колоссального влияния, которое внедрение технологий автоматизации умственного труда способно оказать на работу организаций, может служить ПО, разрабатываемое стартапом из
Нью-Йорка WorkFusion. Эта компания предлагает крупным корпорациям интеллектуальную программную платформу, которая автоматизирует практически весь цикл работ по управлению проектами, в прошлом считавшихся исключительно трудоемкими, за счет комбинирования краудсорсинга и автоматизации.
Программное обеспечение WorkFusion начинает работу с анализа проекта, выявляя задачи, которые могут быть автоматизированы напрямую;
задачи, которые требуют использования краудсорсинга, и задачи, которые должны выполняться штатными специалистами.
Система может автоматически публиковать списки вакансий на специализированных сайтах (например, Elance и Craigslist), а также управлять процессом отбора и найма квалифицированных фрилансеров. Также система занимается распределением заданий и оценкой результатов работы нанятых специалистов. В частности, с целью проверки качества работы фрилансеров система периодически просит их ответить на вопросы, ответ на которые она уже знает. Она отслеживает показатели производительности труда (например, скорость печати) и автоматически подбирает сотрудникам работу, исходя из их способностей. Если определенный сотрудник не может справиться с какой-либо задачей, система автоматически передает ее другому сотруднику, обладающему необходимыми навыками.
Следует отметить, что, несмотря на почти полную автоматизацию процесса управления проектом и значительное снижение потребности в штатных специалистах, использование данного ПО, несомненно, открывает новые возможности перед фрилансерами. Впрочем, так будет не всегда: по мере выполнения сотрудниками выданных заданий алгоритмы машинного обучения WorkFusion непрерывно ищут возможности для дальнейшей автоматизации всего процесса. Другими словами, даже когда фрилансеры работают под контролем системы, они фактически генерируют исходные данные для машинного обучения, т. е. со временем выполняемые ими задачи также будут автоматизированы.

В одном из первых своих проектов компания должна была собрать информацию для актуализации набора данных, состоящего приблизительно из 40 000 записей. Ранее заказавшая проект корпорация ежегодно привлекала к этой работе штатных сотрудников, платя им приблизительно по $4 за каждую запись. После внедрения платформы WorkFusion заказчик получил возможность актуализировать записи ежемесячно по цене $0,2 за каждую.
Сотрудники
WorkFusion установили, что дальнейшая автоматизация процесса за счет встроенных в систему алгоритмов машинного обучения, как правило, обеспечивает снижение расходов на
50 % через один год и еще на 25 % – через два
{129}

1   2   3   4   5   6   7   8   9   10   ...   29

перейти в каталог файлов


связь с админом