Главная страница
qrcode

Мартин Форд. Роботы наступают. Правда ли, что усердие и талант перестанут быть залогом жизненных достижений


НазваниеПравда ли, что усердие и талант перестанут быть залогом жизненных достижений
АнкорМартин Форд. Роботы наступают.pdf
Дата19.01.2018
Размер2,99 Mb.
Формат файлаpdf
Имя файлаMartin_Ford_Roboty_nastupayut.pdf
оригинальный pdf просмотр
ТипДокументы
#40006
страница9 из 29
Каталог
1   ...   5   6   7   8   9   10   11   12   ...   29
Строительные блоки в облаке
В ноябре 2013 г. компания IBM объявила о переносе системы Watson со специально разработанного для него компьютерного оборудования,
которое использовалось во время игр «Jeopardy!», в облако. Другими словами, теперь Watson будет пользоваться ресурсами огромного массива подключенных к Интернету серверов. Разработчики смогут напрямую подключаться к системе и использовать революционные технологии когнитивных вычислений IBM в собственных настольных и мобильных приложениях. Любопытно, что по производительности эта последняя версия Watson в два раза быстрее своего предшественника времен
«Jeopardy!». IBM надеется, что уже в скором времени будет создана целая экосистема приложений, использующих технологии искусственного интеллекта для обработки естественного языка, и в каждом из них будет упоминание того, что оно работает «на базе Watson»
{142}
Миграция передовой технологии искусственного интеллекта в облако почти наверняка станет мощным фактором автоматизации служебных обязанностей белых воротничков. Облачные вычисления стали полем ожесточенной конкурентной борьбы между крупнейшими компаниями в отрасли информационных технологий, включая Amazon, Google и
Microsoft. Google, например, предлагает разработчикам воспользоваться возможностями облачного приложения, реализующего технологии машинного обучения, а также мощнейшей вычислительной системы,
позволяющей разработчикам решать сложнейшие проблемы с большим объемом вычислений, обеспечивая выполнение их программ на высокопроизводительных суперкомпьютерах, например состоящих из объединенных в сеть отдельных серверов. Amazon является ведущим поставщиком услуг облачных вычислений в отрасли. Благодаря десяткам тысяч компьютеров, составляющих основу облачного сервиса Amazon,
небольшой компании Cycle Computing, специализирующейся на задачах,
связанных с большими объемами вычислений, понадобилось всего лишь 18
часов, чтобы решить проблему, с которой один компьютер не смог бы справиться и за 260 лет. По оценкам компании, до появления облачных вычислений на создание суперкомпьютера, способного найти решение этой проблемы, ушло бы $68 млн. Для сравнения: в облаке Amazon можно арендовать 10 000 серверов приблизительно за $90 в час
{143}
В сфере технологий автоматизации умственного труда
разворачиваются те же процессы, что и области робототехники, которая готовится к настоящей революции, обеспеченной удешевлением и повышением производительности программных и аппаратных компонентов. Как только технологии вроде Watson, нейронных сетей с возможностью углубленного обучения и систем генерирования связной письменной речи окажутся в облаке, они, по существу, превратятся в строительные блоки, которые можно будет комбинировать множеством разных способов. Следуя примеру умельцев, которые быстро нашли применение технологии Kinect компании Microsoft в качестве недорого средства обеспечения трехмерного машинного зрения для роботов,
разработчики также найдут неожиданные – и, возможно, революционные –
возможности для применения на практике строительных блоков, состоящих из ПО, находящегося в облаке. Каждый такой блок является своего рода
«черным ящиком», т. е. он может быть использован программистами,
которые могут даже до конца и не понимать, как он работает. В конечном итоге все это наверняка приведет к созданию командами специалистов прорывных технологий искусственного интеллекта, которые очень быстро будут применяться повсеместно и станут доступны даже для непрофессиональных программистов.
Но если инновации в робототехнике приводят к появлению осязаемых объектов – машин, которые часто ассоциируются с конкретными профессиями (к примеру, установка по производству бургеров или робот,
занимающийся высокоточной сборкой), прогресс в области программной автоматизации, скорее всего, будет не столь заметен для рядового человека;
во многих случаях результаты будут скрыты от чужих глаз за стенами офисов, а влияние на работу организаций и их сотрудников будет носить более глобальный характер. Процесс автоматизации профессий, связанных с умственным трудом, вероятнее всего, будет выглядеть следующим образом: команда консультантов в области информационных технологий придет в крупную организацию и создаст там с нуля системы, способные произвести революцию в подходах к ведению бизнеса, одновременно делая ненужной работу сотен и даже тысяч квалифицированных сотрудников.
Более того, одним из открыто заявленных IBM мотивов разработки технологии Watson было повышение конкурентоспособности собственного консалтингового подразделения корпорации, на которое наряду с продажей
ПО сейчас приходится львиная доля выручки. В то же время предприниматели уже ищут способы использования тех же самых строительных блоков на основе облачных технологий для создания доступных программных средств автоматизации, ориентированных на
нужды малого и среднего бизнеса.
Появление облачных вычислений уже оказало значительное влияние на состояние рынка труда в сфере информационных технологий. В период технологического бума в 1990-е гг. у многих компаний и организаций,
независимо от их размера, возникла потребность в ИТ-специалистах,
умеющих настраивать и обслуживать персональные компьютеры,
вычислительные сети и ПО. В результате было создано огромное количество хорошо оплачиваемых работников. Однако к началу XXI в.
ситуация поменялась: все больше и больше компаний стали пользоваться услугами громадных централизованных вычислительных центров,
делегируя им функции своих ИТ-подразделений.
Использование больших площадок для размещения облачных сервисов обеспечивает колоссальную экономию ресурсов, а административные задачи, для выполнения которых когда-то приходилось нанимать целую армию ИТ-специалистов, были в значительной степени автоматизированы.
К примеру, компания Facebook внедрила приложение под названием
«Киборг», относящееся к классу интеллектуального ПО, для постоянного мониторинга десятков тысяч серверов, выявления проблем и – во многих случаях – их устранения без посторонней помощи. В ноябре 2013 г. один из топ-менеджеров рассказал, что система «Киборг» ежедневно решает тысячи проблем, с которыми иначе пришлось бы разбираться вручную.
Также он отметил, что с помощью данной технологии один технический специалист может обслуживать до 20 000 компьютеров
{144}
Центры обработки данных для облачных вычислений часто строятся в относительно удаленных от больших городов районах, где много дешевой земли и, что особенно важно, электроэнергии. Региональные и местные власти активно борются за право размещения вычислительных центров,
привлекая компании вроде Google, Facebook и Apple щедрыми налоговыми льготами и другими привилегиями финансового характера. Разумеется, их первоочередная цель – создание рабочих мест для местных жителей; но эти надежды редко сбываются. В 2011 г. корреспондент The Washington Post
Майкл Розенвалд опубликовал материал, в котором рассказал, что после постройки компанией Apple, Inc. гигантского центра обработки данных стоимостью $1 млрд в городе Мейден в штате Северная Каролина было создано лишь 50 рабочих мест с полной занятостью. Разочарованные жители не могли «понять, как столь дорогостоящий объект площадью несколько сотен акров может обслуживаться таким небольшим количеством сотрудников»
{145}
. Объясняется это, разумеется, тем, что вся
рутинная работа выполняется алгоритмами вроде «Киборга».
Влияние данной тенденции на рынок труда выходит за пределы центров обработки данных, распространяясь на компании, пользующиеся сервисами облачных вычислений. В 2012 г. Роман Станек, который возглавляет компанию Good Data в Сан-Франциско, использующую облачные сервисы Amazon для анализа данных приблизительно 6000
клиентов, заявил, что «раньше для выполнения этой работы каждому из наших корпоративных [клиентов] требовалось не менее пяти человек. А
это – 30 000 человек. Мы обходимся 180. Не знаю, чем все эти люди занимаются сейчас, но эту работу они больше делать не смогут. Это консолидация по принципу "победитель получает всё"»
{146}
Исчезновение тысяч рабочих мест для высококвалифицированных специалистов в области информационных технологий, скорее всего, – лишь первое звено в цепи глубинных сдвигов, которые будут иметь куда более серьезные последствия для работников умственного труда и их востребованности. По меткому выражению одного из основателей Netscape венчурного инвестора Марка Андриссена: «Программное обеспечение пожирает мир». Теперь еще это ПО чаще всего будет размещаться в облаке.
А облако – отличный плацдарм для вторжения практически во все сферы занятости и уничтожения почти всех рабочих мест для белых воротничков,
предполагающих работу с информацией на компьютере.

Алгоритмы решают всё
Если говорить о заблуждениях в отношении компьютерных технологий, от которых давно пора избавиться, в первую очередь следует упомянуть глубокую веру в то, что компьютеры строго подчиняются заданной программе. Как мы видели, алгоритмы машинного обучения ежедневно обрабатывают горы данных, выявляя статистические связи и, по существу, создавая собственные программы на основе результатов поиска.
Но и это еще не все – в некоторых случаях компьютеры выходят за рамки привычного, проникая в сферы, которые, по убеждению подавляющего большинства людей, являются исключительной прерогативой человеческого сознания: машины начинают демонстрировать признаки любопытства и творчества.
В 2009 г. Ход Липсон, возглавляющий Лабораторию креативных машин при Корнельском университете, и аспирант Майкл Шмидт построили систему, которая оказалась способна самостоятельно открывать фундаментальные законы природы. Липсон и Шмидт начали с монтажа двойного маятника – хитроумного механизма, состоящего из двух прикрепленных друг к другу маятников. Когда оба маятника колеблются,
они движутся по очень сложным траекториям, которые кажутся хаотичными. Далее экспериментаторы использовали датчики и камеры для фиксации движения маятников, получив в результате поток данных.
Наконец, они предоставили своему ПО возможность самостоятельно задавать начальную позицию маятника. Другими словами, разработчики создали исследователя с искусственным интеллектом, который может проводить собственные эксперименты.
Они дали программе полную свободу: она могла самостоятельно отпускать маятник, а затем тщательно изучать полученные данные о его перемещениях с целью вычисления математических уравнений,
описывающих поведение маятника. Алгоритм контролировал все аспекты эксперимента; при каждом повторении он случайным образом выбирал положение, из которого маятник должен был начать движение, а затем выполнял анализ и выбирал новое положение, которое с наибольшей вероятностью должно было приблизить его к пониманию законов,
определяющих движение маятника. Липсон отмечает, что система «не является пассивным алгоритмом, который выступает в роли простого наблюдателя. Она задает вопросы. Это – любопытство»
{147}
. Программе,
которая позже получила название «Эврика», хватило несколько часов,
чтобы сформулировать ряд физических законов, описывающих движение маятника, включая второй закон Ньютона; при этом она смогла сделать это,
не получив предварительно никакой информации о физике или законах движения и не будучи запрограммированной на их изучение.
В «Эврике» применяется генетическое программирование – метод,
повторяющий принципы биологической эволюции. Алгоритм начинает с составления уравнений путем случайного сопоставления различных строительных блоков, состоящих из математических выражений, а затем проверяет, насколько хорошо получившиеся уравнения соответствуют данным
[31]
. Уравнения, которые не проходят проверку, отбраковываются, а те, которые демонстрируют определенный потенциал,
перекомпоновываются таким образом, чтобы в конечном итоге из них могла получиться точная математическая модель
{148}
. Процесс нахождения уравнения, описывающего поведение естественной системы, уж точно нельзя назвать пустячной задачей. По словам Липсона: «[П]режде на создание одной прогнозирующей модели у [ученого] могла уйти целая жизнь»
{149}
. Шмидт добавляет: «[Ф]изики вроде Ньютона и Кеплера могли бы запустить этот алгоритм на компьютере и всего после нескольких часов вычислений получить законы, объясняющие падение яблока или движение планет»
{150}
Когда Шмидт и Липсон опубликовали статью с описанием своего алгоритма, на них обрушился шквал запросов на получение доступа к их программе от других ученых. В связи с этим в конце 2009 г. они решили сделать «Эврику» доступной через Интернет. За прошедшее с того момента время с помощью этой программы удалось получить интересные результаты в ряде областей науки, включая упрощенный вариант уравнения, описывающего биохимическую природу бактерий, которую ученые до сих пор не могут до конца понять
{151}
. В 2011 г. Шмидт основал в районе Бостона стартап Nutonian, Inc. с целью коммерциализации
«Эврики» в качестве инструмента анализа больших данных как в бизнесе,
так в научной сфере. Одним из результатов проделанной работы стал перенос «Эврики» – по примеру системы Watson компании IBM – в облачную среду и превращение ее в приложение, которое доступно другим разработчикам ПО в виде встраиваемого модуля.
Большинство из нас склонны – что вполне естественно – связывать идею творчества исключительно с мозгом человека, но будет нелишним напомнить, что сам наш мозг – несомненно самое сложное «изобретение»
из всех ныне существующих – является продуктом эволюции. С этой точки зрения вряд ли стоит удивляться тому, что очень часто при попытке создания способных к творчеству машин используются методы генетического программирования. Суть генетического программирования заключается в том, чтобы научить компьютерные алгоритмы проектировать самих себя путем естественного отбора в соответствии с описанными
Дарвином принципами. Все начинается с генерирования случайного компьютерного кода, который затем многократно редактируется с помощью методов, имитирующих процесс полового размножения. Время от времени в код вбрасывается случайная мутация, в результате чего процесс его формирования может пойти совершенно другим путем. Появляющиеся новые алгоритмы подвергаются проверке на пригодность, в результате которой они либо выживают, либо – что происходит намного чаще –
умирают. Одним из ведущих исследователей в этой области является профессор
Стэнфордского университета, специалист в области информационных технологий и консалтинга Джон Коза. Он проделал большую работу по использованию генетических алгоритмов в качестве
«средств автоматизации изобретательской деятельности»
[32]
. Коза привел по меньшей мере семьдесят шесть примеров того, как в результате использования генетических алгоритмов были получены результаты,
способные конкурировать с плодами работы инженеров и ученых.
Приведенные им примеры относились к самым разным областям, включая проектирование электрических цепей, механические системы, оптику,
восстановление ПО и гражданское строительство. В большинстве из них алгоритмы воспроизвели существующие разработки, но по крайней мере в двух случаях генетические программы сумели создать патентоспособные изобретения
{152}
. По мнению Коза, генетические алгоритмы обладают неоспоримым преимуществом перед разработчиками-людьми, поскольку не ограничены рамками сложившихся представлений; другими словами,
они с большей вероятностью могут найти принципиально новый подход к решению проблемы
{153}
Если исходить из предположения Липсона о способности «Эврики»
проявлять любопытство и утверждения Коза об отсутствии у компьютеров предубеждений, придется допустить, что творчество не является чем-то,
выходящим за пределы возможностей компьютеров. Окончательно поверить в это можно только в том случае, если компьютер сумеет создать что-нибудь, что человек сочтет произведением искусства.
Мы воспринимаем художественное творчество – наверное, в большей степени,
чем любой другой вид интеллектуальной деятельности, – в качестве уникального проявления человеческого сознания. Как заметил журналист
Time Лев Гроссман: «Создание произведения искусства относится к одному из тех видов деятельности, которые мы связываем с людьми – и только с людьми. Это – акт самовыражения; вы не можете заниматься этим, если у вас нет своего "Я"»
{154}
. Если мы признаем саму возможность того, что компьютер может быть настоящим художником, нам придется полностью пересмотреть свои представления о природе машин.
В фильме 2004 г. «Я, робот» главный герой, которого играет Уилл
Смит, спрашивает робота: «Может робот написать симфонию? Может робот взять холст и превратить его в прекрасный шедевр?» В своем ответе – «А ты можешь?» – робот исходит из того, что, по правде говоря,
подавляющее большинство людей тоже неспособны на это. Однако если бы
Смит задал свой вопрос в 2015 г., то он бы получил куда более уверенный ответ: «Да».
В июле 2012 г. Лондонский симфонический оркестр исполнил композицию под названием «Переходы – в бездну». Один из критиков назвал ее «утонченной и восхитительной»
{155}
. Это событие стало первым в истории случаем исполнения именитым оркестром музыкального произведения, полностью написанного машиной. Автором композиции был
Iamus
– кластер компьютеров, на котором запущен алгоритм искусственного интеллекта с уклоном в музыку. Iamus (назван в честь героя греческой мифологии, как считалось, он мог понимать язык птиц) был разработан исследователями из Университета Малаги в Испании. Система начинает работу с минимальным набором информации, включая, например,
тип инструментов, которые будут использоваться при воспроизведении музыки, а затем без какого-либо вмешательства со стороны человека за считаные минуты создает сложнейшие композиции, способные вызывать по-настоящему сильную эмоциональную реакцию у слушателей. Iamus уже написал миллионы уникальных композиций в классическом для модернизма стиле; вероятно, в будущем он будет адаптирован и к другим музыкальным жанрам. Подобно «Эврике», за созданием Iamus последовало учреждение стартапа с целью коммерциализации технологии. Новая компания под названием Melomics Media, Inc. начала продавать музыку через интернет-магазин, похожий на iTunes. Вся разница в том, что продажа созданных Iamus композиций не обуславливается требованием об авторских отчислениях, благодаря чему покупатели могут использовать эту музыку так, как им заблагорассудится.

Музыка – не единственный вид искусства, который освоили компьютеры. Профессор Симон Колтон из Лондонского университета,
занимающийся креативными компьютерными вычислениями, создал программу искусственного интеллекта под названием The Painting Fool, к которой, как он надеется, в будущем все будут относиться как к серьезному художнику (рис. 4.1). «Цель проекта – не разработать ПО, которое будет обрабатывать фотографии, чтобы они были похожи на рисунок; для этого уже многие годы используется Photoshop, – отмечает Колтон. – Цель –
проверить, могут ли люди воспринимать творчество компьютерной программы как что-то, заслуживающее внимания само по себе»
{156}
Колтон встроил в систему набор возможностей, которые он называет
«способностью к оценочным суждениям и воображению». Программное обеспечение The Painting Fool может идентифицировать эмоции на фотографиях людей, а затем создавать абстрактные портреты, передающие эти эмоциональные состояния. Кроме того, оно может генерировать воображаемые объекты, используя методы на основе принципов генетического программирования. Программа Колтона даже умеет критиковать саму себя. Для этого она использует приложение под названием Darci, созданное исследователями из Университета Бригама
Янга.
Разработчики Darci начали с создания базы картин, в которой каждое
произведение искусства сопровождалось описательными прилагательными
«мрачное», «печальное», «вдохновляющее» и т. п., данными им людьми.
Затем они обучили нейронную сеть так, чтобы она могла формировать ассоциации, и, наконец, загрузили в нее новые картины, которые она должна была самостоятельно охарактеризовать. Программа The Painting
Fool может использовать результаты работы Darci при принятии решения о достижении или недостижении поставленных целей в процессе создания полотна
{157}
Я не хочу сказать, что в скором времени толпы художников и композиторов лишатся своей работы. Я лишь хочу обратить внимание на то, что для методов, используемых в ПО с творческим уклоном, многие из которых, как мы могли убедиться, основываются на генетическом программировании, можно найти множество других способов применения.
Если компьютеры могут сочинять музыку и проектировать электронные компоненты, то нет ничего невероятного в том, что совсем скоро они сформулируют новую правовую доктрину или придумают новый подход к решению какой-либо проблемы в менеджменте. Пока же реальная угроза автоматизации по-прежнему распространяется лишь на те виды умственного труда, которые отличаются наибольшей степенью рутинности и шаблонности. Однако ситуация меняется очень быстро.
Нигде так не ощущается стремительный ход прогресса, как на Уолл- стрит. Там, где когда-то вся торговля в большой степени зависела от непосредственного общения – либо среди несмолкающего гула голосов на биржевых площадках, либо по телефону, – теперь она во многом определяется действиями машин, взаимодействующих по оптоволоконным каналам связи. По некоторым оценкам, на алгоритмы автоматизированной торговли сейчас приходится не менее половины или даже 70 % всех операций на фондовом рынке. Эти изощренные роботы-трейдеры, во многих из которых используются самые передовые разработки в области искусственного интеллекта, не ограничиваются простым выполнением стандартных торговых операций. Чтобы получить прибыль, они отслеживают действия паевых инвестиционных фондов и пенсионных фондов, пытаясь выявить интересующие их акции и скупить их накануне крупных сделок, инициируемых такими фондами. Они стараются обмануть другие алгоритмы, сначала наводняя систему фиктивными заявками- приманками, а затем отзывая их за доли секунды. И Bloomberg, и Dow
News
Service предлагают специализированные продукты в
машиночитаемом формате, призванные удовлетворить потребность в финансовых новостях прожорливые алгоритмы, которые могут – в течение
приблизительно нескольких миллисекунд – превратить их в прибыльные торговые операции. Новостные службы также предоставляют оперативные количественные данные, благодаря чему машины всегда в курсе того, какие именно акции и иные инструменты инвестирования пользуются наибольшей популярностью
{158}
. Twitter, Facebook и блогосфера также служат источниками входных данных для этих соперничающих друг с другом алгоритмов. В 2013 г. группа физиков опубликовала в журнале
Nature статью, в которой рассказала о результатах проведенного ею исследования мировых финансовых рынков. В частности, ученые заявили о
«нарождающейся экосистеме конкурирующих машин, натравливающих друг на друга „стаи“ хищнических алгоритмов» и предположили, что роботизированная торговля не просто вышла из-под контроля разработавших соответствующие системы людей, но и оказалась выше их понимания
{159}
В этом мире, населенном алгоритмами, которые пребывают в состоянии постоянной борьбы, события разворачиваются столь стремительно, что ни один даже самый быстрый трейдер никогда не сможет за ними угнаться. Более того, скорость – иногда измеряемая в миллионных или даже миллиардных долях секунды – имеет настолько критическое значение для успеха алгоритмической торговли, что фирмы с
Уолл-стрит в совокупности уже инвестировали миллиарды долларов в создание вычислительных центров и прокладку коммуникационных каналов, стремясь получить хотя бы незначительное преимущество в скорости. К примеру, в 2009 г. компания Spread Networks потратила целых
$200 млн на прокладку новой волоконно-оптической линии связи длиною
1328 км напрямую из Чикаго в Нью-Йорк. Вся работа проводилась в режиме максимальной секретности, чтобы конкуренты ничего не заподозрили, – и это несмотря даже на то, что часть маршрута пролегала через Аллеганские горы и для ее прокладки использовалась взрывчатка. С
вводом новой волоконно-оптической линии компания получила преимущество в скорости над существующими линиями связи в три или четыре тысячных секунды. Этого было достаточно, чтобы любая система алгоритмической торговли, использующая новый канал, легко обходила своих конкурентов по рынку. Оказавшись в невыгодной ситуации, фирмы с
Уолл-стрит выстроились в очередь на аренду канала связи – по некоторым сведениям, им пришлось выложить за эту услугу в десять раз больше стоимости аренды более медленного канала. Ведется работа по прокладке аналогичного кабеля по дну Атлантического океана между Лондоном и

Нью-Йорком; ожидается, что новый канал позволит сократить текущее время выполнения операций на пять тысячных секунды
{160}
Влияние всех этих технологий автоматизации на рынок труда очевидно: даже в период роста фондового рынка в 2012–2013 гг. крупные банки с Уолл-стрит не переставали выступать с объявлениями о массовых увольнениях, часто приводивших к исчезновению десятков тысяч рабочих мест. На рубеже XXI в. на Уолл-стрит работало почти 150 000 финансистов;
к 2013 г. это число сократилось чуть более чем на 100 000 – и это при том,
что как объем транзакций, так и прибыли отрасли поднялись до рекордно высоких значений
{161}
. На фоне общего роста уровня безработицы на Уолл- стрит было создано по крайней мере одно высокооплачиваемое рабочее место: в конце 2012 г. Дэвид Феруччи, специалист в области информационных технологий, руководивший проектом по созданию
Watson, ушел из IBM, откликнувшись на предложение о работе от одного хеджевого фонда с Уолл-стрит, где ему предстояло применить последние разработки в области искусственного интеллекта для моделирования экономики; судя по всему, предполагалось, что наличие таких моделей должно стать конкурентным преимуществом торговых алгоритмов фирмы
{162}

1   ...   5   6   7   8   9   10   11   12   ...   29

перейти в каталог файлов


связь с админом