Главная страница

Эврики и эйфории. Уолтер Гратцер Эврики и эйфории. Об ученых и их открытиях


Скачать 2,29 Mb.
НазваниеУолтер Гратцер Эврики и эйфории. Об ученых и их открытиях
АнкорЭврики и эйфории.pdf
Дата30.06.2017
Размер2,29 Mb.
Формат файлаpdf
Имя файлаEvriki_i_eyforii.pdf
оригинальный pdf просмотр
ТипДокументы
#28150
страница5 из 37
Каталогid313476676

С этим файлом связано 48 файл(ов). Среди них: Бодрийяр Ж. - Реквием по масс-медиа.docx, Istoria_zhenschin_na_Zapade_T_IV_pdf.pdf, Kornev_V_V_-_Obyknovennaya_ideologia.pdf, Bekkio_Zh__Zhyuslen_Sh_-_Novy_gipnoz_Prakticheskoe_rukovodstvo_p, Зейга Дж.К. - Испытание Эриксоном. doc.doc, Gillinen_S_-_Nasledie_Miltona_Erixona_pdf.pdf, Vitgenshteyn_L_-_Filosofskie_raboty_Chast_II_pdf.pdf и ещё 38 файл(а).
Показать все связанные файлы
1   2   3   4   5   6   7   8   9   ...   37
Коты и догмы
Как и в театре, животные в бихевиористских экспериментах многое перенимают у своих дрессировщиков. Льюис Томас, ученый и эссеист, рассказывает о таком приводящем в замешательство эпизоде в одном из своих изящных очерков. Сначала он упоминает Умного
Ганса, математически одаренную лошадь из Германии, которую ее хозяин, герр фон Остен,
предъявлял публике, словно вундеркинда, в 1903 году. Животное выполняло расчеты в уме и отвечало на вопросы, ударяя копытом нужное число раз. Десятью годами ранее (или около того)
о подобном феномене писали в Англии: лошадь по кличке Магомет умела сообщать время, когда ей показывали часы. Комиссия психологов, исследовав Умного Ганса, заключила, что лошадь-“математик” реагирует на малозаметные и, как согласились все, бессознательные движения хозяина, подсказывавшего понятливому животному, когда прекращать бить копытом.
А вот история Томаса о котах:
Мышление котов покрыто мраком. Это тайна за пределами человеческого понимания. Мы имеем дело с наименее человекоподобным из всех существ — и в то же время, с чем согласится любой владелец кота, с самым разумным. В 1979 году журнал Science опубликовал статью Б.Р.
Мура и С. Стуттарда под заглавием “Доктор Гутри и Felis Domesticus (кошка домашняя. —
Прим. перев.): заблуждения о котах”, блестящий рассказ об умении обмануть науку,
свойственном этому виду. За 35 лет до этого Е.Р. Гутри и Дж. П. Хортон описали такой эксперимент: котов помещали в ящик-головоломку со стеклянной дверцей и учили выбираться наружу: достаточно было толкнуть тонкий вертикальный стержень, вмонтированный в переднюю часть ящика, — и дверца распахивалась. Исследователей удивило не то, что коты разгадывают головоломку, а то, что они прежде исполняют сложный ритуал со строго определенными движениями: трутся головой и спиной о торец коробки, ходят кругами и только потом толкают стержень. Эксперимент с тех пор считался классикой экспериментальной психологии, возбуждая даже догадки о суевериях у котов — мол, прежде чем открыть дверь, им требуется выполнить ряд магических действий.
Мур и Стуттард повторили эксперимент Гутри и наблюдали тот же комплекс действий,
однако затем выяснилось, что проявляется он только тогда, когда в поле зрения кота находится человек. Если в комнате никого не было, кот ничего не делал и просто засыпал. Вид человека —
вот и все, что заставляло животное проделывать сложную цепочку действий, с дверцами и стержнями либо без них. Никакого приобретенного поведенческого ритуала здесь не было —
кот просто приветствовал человека.
Lewis Thomas, Late Night Thoughts (University Press, Oxford, 1984J.

А какой в этом толк?
Канцлер британского казначейства Уильям Гладстон, взглянув на опыты Майкла Фарадея,
который демонстрировал только что открытое явление электромагнитной индукции, спросил ученого: “А какой в этом толк?” Последовал знаменитый ответ: “Не знаю, но когда-нибудь, сэр,
вы сможете обложить это налогом”. (Согласно другой версии — или, может, это просто случилось в другой раз, — Фарадей парировал словами: “А какой толк в новорожденном?”)
Йёнс Якоб Берцелиус, один из отцов-основателей современной химии, наткнулся на такого рода непонимание в Швеции. Рассказывают, что слуга, которого Берцелиус нанял помогать ему в лаборатории, вынужден был объясняться с группой флегматичных стокгольмских бюргеров,
которым хотелось знать, что же такое происходит в доме Берцелиуса. “Утром я роюсь в серванте и шкафах, чтобы принести хозяину самые разнообразные вещи: порошки, кристаллы, жидкости разнообразных цветов и запахов”, — рассказывал им слуга химика. “А потом?” — “Хозяин их разглядывает, берет ото всего понемногу и помещает в огромный горшок”. — “А потом?” —
“Потом нагревает горшок и, когда содержимое большого горшка покипит час-другой, разливает все по меньшим горшкам”. — “А потом что он делает?” — “Потом он сливает все в одну большую бадью. Следующим утром я ее выношу и опорожняю над канавой”.
Е. Oesper Ralph, The Human Side of Scientists (University Publications, University of Cincinnati,
Cincinnati, Ohio, 1975).

Разрывая цепи
Идея цепной реакции — процесса, который ускоряется за счет размножения активных частиц, — пришла в химию в 1913 году, а в физику 20 годами позже. Таким реакциям свойственно начинаться медленно, иногда с заметной задержкой, а заканчиваться взрывом.
Самый известный пример — деление атомных ядер: атом урана-235 захватывает нейтрон, ядро распадается и высвобождает 2–3 новых нейтрона; те, в свою очередь, атакуют соседние ядра урана, и процесс деления стремительно набирает ход. В химии реакции с похожими свойствами были известны с конца XIX века и озадачивали даже таких светил, как Роберт Бунзен,
знаменитый немецкий химик.
Физикохимик Макс Боденштейн провел в Германии обстоятельную работу по выяснению механизмов химических реакций. В 1913 году его заинтересовала реакция между водородом и хлором, инициируемая светом: за “подсветкой” следует задержка, потом реакция ускоряется и внезапно останавливается. Ассистент Боденштейна Вальтер Дюкс так описывает, что происходило. Когда они вдвоем обдумывали результаты эксперимента, Боденштейн расстегнул свою золотую цепочку от часов и неожиданно попросил Дюкса подержать ее за один конец,
пока сам раскрутит другой. “Если мы придаем цепи импульс, — начал он размышлять вслух, —
он распространится по всей длине, но, если зажать или выдернуть одно звено, движение прервется”. Дюкс спросил: “Значит, это происходит и с нашей реакцией?” — “Неплохая идея.
Возможно, стоит назвать ее цепной; давайте это проверим”.
Идея быстро получила признание и начала всплывать в работах ученых, занимавшихся самыми разными областями химической кинетики, в особенности — образованием молекул высших полимеров, основы волокон и пластмасс.
После смерти Боденштейна в 1942 году Дюкс собирался выпросить у его семьи цепочку от часов, но оказалось, что в порыве патриотизма Боденштейн пожертвовал ее на военные нужды, а к часам прикрепил стальную. Тогда Дюкс изготовил ее копию из золота и передал в дар
Университету Ганновера.
Лео Сцилард (1898–1964), странствующий физик из Венгрии, провел большую часть жизни в гостиничных номерах. Как правило, его имущество умещалось в двух чемоданах. Он покинул
Берлин после прихода Гитлера к власти.
Позже он вспоминал:
Осенью 1933-го я жил в Лондоне и был занят поиском мест для коллег, лишившихся своих университетских постов с приходом нацистов. Однажды утром я прочел в газете статью про ежегодное собрание Британской ассоциации по развитию науки. Во время заседания,
рассказывал репортер, Резерфорд заявил, что разговоры о промышленном использовании атомной энергии — полная чушь. Уверения экспертов в принципиальной невозможности чего- либо всегда меня забавляли. В тот день я прогуливался вдоль Саутгемптон-роу (в Блумсберри,
где находилась гостиница Сциларда) и остановился у светофора. Я задумался — а вдруг
Резерфорд действительно прав? Когда сигнал сменился на зеленый и я переходил улицу, мне в голову неожиданно пришла мысль: что, если найти такой элемент, который нейтроны могут расщепить и который, поглотив один нейтрон, испускал бы два? Если такого элемента собрать достаточно много, то он мог бы поддерживать цепную ядерную реакцию, а мы могли бы выделять энергию в промышленных масштабах и конструировать атомные бомбы. Эта мысль стала моей навязчивой идеей, она-то и привела меня в ядерную физику — область, с которой я прежде не имел дела.

Сцилард нашел себе в Лондоне лабораторию и попробовал проверить свою идею, однако ни один из элементов, которые он пытался бомбардировать нейтронами, вторичных нейтронов не давал. Сцилард тем не менее считал свою схему достаточно реалистичной и даже спустя несколько месяцев ее запатентовал. Во избежание огласки патент был оформлен на
Адмиралтейство.
Примерно в то же время Сцилард пал жертвой невинной шутки, результат которой превзошел все ожидания шутников. Ими были двое молодых физиков — Карл Бош из Германии,
и Р.В. Джонс, работавший тогда в Оксфорде. Джонс, представившись редактором Daily Express,
позвонил Сци-ларду и спросил, может ли тот подтвердить, что изобрел радиоактивные лучи смерти. Сцилард буквально взорвался, потому как именно тогда получил наконец патент на цепную ядерную реакцию, и его панику по поводу утечки, пусть и искажающей факты, легко себе представить.
Понадобилось пять лет, чтобы мечты Сциларда стали реальностью: физик Лизе Майтнер
(1878–1968) вместе с химиками Отто Ганом (1879–1968) и Фрицем Штрасманом (1902–1980)
занималась в Берлине анализом продуктов ядерных превращений. Будучи еврейкой, Майтнер была вынуждена бежать из страны, не дожидаясь ареста. Найдя убежище в Швеции, она поддерживала со своим другом и коллегой Отто Ганом связь по почте. В декабре 1938 года к ней приехал в гости племянник и тоже физик Отто Фриш (1904–1979), который работал тогда в знаменитом институте Нильса Бора в Копенгагене. У племянника и тети вошло в привычку встречать Рождество вместе, но тот свой приезд Фриш описывает как самое запоминающееся событие в жизни.
За прошедший год был открыт целый ряд продуктов ядерных бомбардировок, которые иногда, как казалось, нарушали установленный ранее закон: столкновение элементарной частицы с ядром может разве что выбить оттуда альфа-частицу (идентичную ядру гелия-4) или бета-частицу (электрон); в результате получались по прогнозам и на практике ядра с зарядом (то есть атомным номером) на два меньше или на один больше, чем у ядра-родителя. Среди продуктов бомбардировки урана Ган и Штрасман обнаружили, как они полагали, изотопы радия. (Изотопы — это разновидности элемента, отличающиеся только числом нейтронов в ядре; поскольку число положительно заряженных протонов в ядре и, следовательно,
отрицательно заряженных электронов снаружи у них одинаково, то изотопы с химической точки зрения идентичны.) Результат казался необъяснимым, поскольку у радия ядро меньше, чем у урана, и Лизе Майтнер предупредила Гана, что следует тщательно все проверить, прежде чем публиковать статью о необъяснимой аномалии.
Когда Отто Фриш впервые навестил тетю в Кунгэльве, маленьком шведском городке, где та отдыхала с друзьями, он обнаружил ее размышляющей над последним письмом Отто Гана. Вот как он описывает встречу:
Я собирался рассказать ей о новом эксперименте, который задумал, но она и не думала меня слушать; вместо этого она попросила меня прочесть письмо. Его содержание было настолько ошеломляющим, что я был вынужден отнестись к нему скептически. Ган и Штрасман выяснили, что три получившихся у них вещества не были радием с точки зрения химии; более того, оказалось затруднительно отделить их от бария, который, как обычно, они добавили, чтобы облегчить процедуру химического разделения. Они пришли к выводу, неохотно и с колебаниями,
что это были изотопы бария (ядра которых вдвое меньше ядер урана).
Было ли это просто ошибкой? “Нет, — сказала Лизе Майтнер, — Ган для этого слишком
хороший химик”. Но как мог барий получиться из урана? Никогда еще от ядер не отщепляли больших кусков, чем отдельные протоны и ядра гелия, а чтобы отщепить сразу много частиц,
требовалось слишком много энергии. Также не представлялось возможным, что урановое ядро будет разрезано поперек. Ядро не похоже на хрупкий материал, какой режут и ломают; Георгий
Гамов давно предположил, а Бор убедительно аргументировал, что ядро скорее похоже на каплю жидкости. Возможно, капля может превратиться в две капли более плавно: сначала вытянуться,
потом сжаться посередине, а потом разорваться — но не сломаться напополам. Мы знали, что существует сильное взаимодействие, которое будет препятствовать такому процессу, подобно тому как поверхностное натяжение обычной жидкости мешает капле распасться на части. Но ядра отличаются от капель одной важной особенностью: они несут электрический заряд, а отталкивание зарядов противодействует поверхностному натяжению. На этом месте мы оба присели на поваленное дерево (разговор происходил во время нашей прогулки по заснеженному лесу, я был на лыжах, а Лизе Майтнер заявила, что справится и без них) и приступили к расчетам на обрывках бумаги. Заряд уранового ядра, как мы выяснили, и в самом деле достаточно велик, чтобы преодолеть силы поверхностного натяжения практически целиком,
поэтому урановое ядро должно напоминать крайне шаткую, неустойчивую каплю, готовую разделиться от малейшего толчка — такого, как удар одного-единственного нейтрона.
Но была и другая проблема. После разделения капли будут удаляться друг от друга за счет взаимного электростатического отталкивания, получая высокую скорость и невероятно высокую энергию, в общей сложности порядка 200 МэВ. К счастью, Лизе Майтнер вспомнила эмпирическую формулу для вычисления масс ядер и вывела, что пара ядер, получающихся при распаде урана, будет легче его примерно на одну пятую массы протона. Далее, когда масса исчезает, по формуле Эйнштейна Е=mc
2
возникает энергия, и одна пятая массы протона как раз соответствует 200 МэВ. Итак, источник энергии был скрыт здесь. Все сходилось!
Несколько дней спустя я отправился в Копенгаген в сильном волнении. Я догадался предъявить наши измышления — тогда это не казалось чем-то большим — Бору, которому предстояло вот-вот отбыть в США. У него для меня было всего несколько минут, но стоило мне начать рассказывать, как он ударил себя кулаком по голове и запричитал: “О, какими идиотами мы все были! Да, но это прекрасно! Именно так и должно быть! Вы с Лизе Майтнер уже написали статью?” — “Нет, — сказал я, — но как-нибудь обязательно опубликуем.” Бор пообещал никому не проговориться, пока статья не выйдет”. А потом он отправился встречать свой корабль.
Фриш спросил некоего американского биолога из лаборатории, как в биологии называется процесс, когда из одной клетки получаются две. “Деление”, — ответил тот, и так, стараниями
Фриша, термин “деление ядер” появился на свет.
Laidler Keith, The World of Physical Chemistry (Oxford University Press, Oxford, 1993,); Szilard
Leo, The Collected Works of Leo Szilard: Scientific papers, ed. Feld B.T. and Szilard G.W. (МГГ
Press, Cambridge, Mass., 1972): и Frisch Otto, What Little I Remember (Cambridge University Press,
Cambridge, 1979).

О жизни и смерти
Исидор Раби родился в Польше в 1898 году, рос в страшной бедности в Нью-Йорке и стал одним из величайших физиков мира. В 1944 году он получил Нобелевскую премию за открытие явления, которое сделало возможной ЯМР-спектроскопию, один из самых действенных способов, позволяющих изучить структуру молекул и создавать изображения живых тканей. Он основан на том, что (и в этом заключалось открытие) атомное ядро обладает магнитным моментом, как если бы оно было микроскопической намагниченной стрелкой.
Раби, который большую часть деятельной жизни провел в Колумбийском университете в
Нью-Йорке, после присуждения Нобелевской премии стал государственным советником по вопросам науки. Он охладел к работе в лаборатории; однажды он отозвался о Нобелевской премии так: “Если только в вас нет тяги соревноваться, вряд ли после церемонии вы начнете работать энергичней. Это как с бостонской леди, которая заявила: “К чему мне путешествовать,
если я уже здесь?” К тому же премия отвлекает вас от вашей области, поскольку открываются новые горизонты”.
Но, похоже, в глубине души Раби по-прежнему волновали вопросы научной истины. Как и
Эйнштейн, он был озабочен физическим смыслом квантовой теории. Один из его учеников вспоминал, что мучило Раби, о чем он думал, когда ему шел девяностый год и он был уже практически при смерти:
Однажды, в декабре 1987-го, ко мне в Рокфеллеровский университет зашел коллега и сообщил, что он только что видел Раби и Раби хочет со мной поговорить. Я знал, где его искать
— в Мемориал-госпитале Слоана-Кэтеринга: Раби лежал там, у него был рак в последней стадии. И вот я отправился в госпиталь, ожидая, что Раби приготовил для меня какое-нибудь последнее напутствие. Я застал Раби в хорошем расположении духа. О чем же он хотел поговорить? Об основаниях квантовой механики, которые, как он заявил, беспокоили его десятилетия назад и в эти последние недели тоже не давали покоя. Мы беседовали, может быть,
полчаса. Потом я попрощался с ним — навсегда, 11 января 1989 года Раби не стало.
Воспоминания взяты из книги Pais Abraham, The Genius of Science (Oxford University Press,
Oxford, гооо).

Математический риск
Физик Георгий Гамов бежал в США из сталинской России. Говоря о том, что с ученым в эпоху политической нестабильности может приключиться все что угодно, он рассказывал такую историю:
Вот сюжет, который поведал мне один из моих друзей, Игорь Тамм (Тамм — лауреат
Нобелевской премии по физике 1958 года). Однажды, когда город был занят красными, Тамм (в те времена профессор физики в Одессе) заехал в соседнюю деревню узнать, сколько цыплят можно выменять на полдюжины серебряных ложек — и как раз в это время деревню захватила одна из банд Махно. Увидев на нем городскую одежду, бандиты привели Тамма к атаману —
бородатому мужику в высокой меховой шапке, у которого на груди сходились крест-накрест пулеметные ленты, а на поясе болталась пара ручных гранат.
— Сукин ты сын, коммунистический агитатор, ты зачем подрываешь мать-Украину? Будем тебя убивать.
— Вовсе нет, — ответил Тамм. — Я профессор Одесского университета и приехал сюда добыть хоть немного еды.
— Брехня! — воскликнул атаман. — Какой такой ты профессор?
— Я преподаю математику.
— Математику? — переспросил атаман. — Тогда найди мне оценку приближения ряда
Макларена первыми n-членами. Решишь — выйдешь на свободу, нет — расстреляю.
Тамм не мог поверить своим ушам: задача относилась к довольно узкой области высшей математики. С дрожащими руками и под дулом винтовки он сумел-таки вывести решение и показал его атаману.
— Верно! — произнес атаман. — Теперь я вижу, что ты и вправду профессор. Ну что ж,
ступай домой.
Кем был этот человек? Никто не знает. Если его не убили впоследствии, он вполне может преподавать сейчас высшую математику в каком-нибудь украинском университете.
Опасности продолжали подстерегать ученых и после революции. Физик-теоретик Марк
Азбель, который после многих лет тюрьмы и преследований сумел укрыться в Израиле, делится другим примером:
Эту историю я знаю со слов профессора Повзнера, который преподавал в Военно- инженерной академии. Однажды он вошел в аудиторию, готовясь начать лекцию с обычного вступления о господстве русских в математике, а затем перейти собственно к математике. Но, к его ужасу, за минуту до того, как начать говорить, он заметил, что в аудитории присутствует генерал, глава Академии. Он подумал и решил, что лучше будет посвятить всю лекцию светилам русской математики. К счастью, он был невероятно одаренным человеком и умел быстро соображать — в считаные секунды он придумал чудесную лекцию о русской математике XII
века. Он предавался полету фантазии целый час и остановился только за пять минут до звонка
— спросить, есть ли вопросы. И заметил, что один из студентов тянет руку.
— Я вас слушаю…
— Вы так увлекательно рассказываете про русскую математику в Средние века. Не подскажете ли нам, в какие книги по этому поводу заглянуть? Я бы хотел получше ознакомиться с темой…

Не имея времени подумать, профессор немедленно ответил:
— Увы, это невозможно! Все архивы сгорели во времена татаро-монгольского ига!
Когда лекция закончилась, к лектору подошел генерал и спросил:
— Итак, профессор… Все архивы сгорели, верно?
Только тогда несчастный профессор осознал, что именно он произнес. Беззвучный вопрос повис в воздухе: если все доказательства русского господства в этой науке сгорели, как мог сам профессор что-нибудь знать о математике до нашествия? Он был на грани паники, когда неожиданно генерал тепло ему улыбнулся, развернулся и вышел. Этот высокопоставленный командир был человеком сообразительным и достойным; иначе профессору Повзнеру было бы не избежать крупных неприятностей.
Gamow George, My World Line (New York, Viking, 1970) и Azbel Mark Ya., Refusnik (Hamish
Hamilton, London, 1982).

1   2   3   4   5   6   7   8   9   ...   37

перейти в каталог файлов
связь с админом